УДК: 616.981.21/.958.7
ББК: 55.142
Михайлов А.О., Плехова Н.Г., Торопкова Л.А., Сокотун С.А., Белевич И.О.
Роль клеток врожденного иммунитета в патогенезе коронавирусной инфекции, вызванной SARS-CoV-2
Ключевые слова: SARS-CoV-2, СOVID-19, клеточный иммунитет, врожденный иммунитет
В данной статье, основанной на обзоре литературы, представлены актуальные данные о роли клеток врожденного иммунитета в патогенезе коронавирусной инфекции. Исследуется взаимосвязь между активацией различных клеток врожденного иммунитета и тяжестью течения COVID-19. В частности, рассматривается роль нейтрофилов, лимфоцитов, дендритных клеток, NK-клеток и клеток, экспрессирующих HLA-DR, при COVID-19. Обзор подчеркивает сложное взаимодействие между этими клетками в формировании эффективного иммунного ответа против SARS-CoV-2, а также их вклад в воспалительные процессы, которые могут привести к тяжелому течению заболевания. Необходимы дальнейшие исследования для полного выяснения механизмов, посредством которых эти клетки способствуют как защите, так и развитию патологии при COVID-19, что будет иметь решающее значение для разработки эффективных терапевтических стратегий. Это понимание будет способствовать более полному знанию иммунного ответа на инфекцию SARS-CoV-2 и разработке целенаправленных методов лечения. В обзоре также обсуждается потенциал модуляции врожденного иммунного ответа для улучшения клинических исходов у пациентов с COVID-19. Наконец, в статье определяются области, где необходимы дальнейшие исследования, чтобы полностью понять сложную взаимосвязь клеток врожденного иммунитета в контексте инфекции SARS-CoV-2.
Литература
- Биохимические и иммунологические аспекты патофизиологии острого респираторного дистресс-синдрома / Н.Б. Пилькевич, В.А. Марковская, О.В. Яворская и др. // Медицина. 2024. Т. 12, № 3. С. 103–117. DOI: 10.29234/2308-9113-2024-12-3-103-117.
- Вспышка нового инфекционного заболевания COVID-19: β-коронавирусы как угроза глобальному здравоохранению / Д.В. Горенков, Л.М. Хантимирова, В.А. Шевцов и др. // БИОпрепараты. Профилактика, диагностика, лечение. 2020. Т. 20, № 1. С. 6–20. DOI: 30895/2221-996X-2020-20-1-6-20.
- Иванис В.А., Попов А.Ф., Краскина В.А. Анализ летальных исходов от COVID-19 в Приморском крае // Тихоокеанский медицинский журнал. 2023. № 2 (92). С. 54–59. DOI: 10.34215/1609-1175-2023-2-54-59.
- Клеточные и гуморальные факторы врожденного противовирусного иммунитета / А.В. Москалев, Б.Ю. Гумилевский, В.Я. Апчел, В.Н. Цыган // Вестник Российской военно-медицинской академии. 2022. Т. 24, № 4. С. 751–764. DOI: 17816/brmma108136.
- Малинникова Е.Ю. Новая коронавирусная инфекция. Сегодняшний взгляд на пандемию XXI века // Инфекционные болезни: Новости. Мнения. Обучение. 2020. Т. 9, № 2 (33). С. 18–32. DOI: 10.33029/2305-3496-2020-9-2-18-32.
- Мамедов М.К. Врожденный иммунитет: современная концепция // Биомедицина (Баку). 2010. № 2. С. 3–9.
- Массовый некроз нейтрофилов в мазке периферической крови человека как неблагоприятный прогностический фактор исхода вирусных инфекций на примере SARS-CoV-2 / Н.С. Золотухина, С.М. Мирошниченко, А.И. Субботовская, М.И. Воевода // Клиническая и экспериментальная морфология. 2025. Т. 14, № 1. С. 37–45. DOI: 10.31088/CEM2025.14.1.37-45.
- Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты / В.В. Никифоров, Т.Г. Суранова, Т.Я. Чернобровкина и др. // Архивъ внутренней медицины. 2020. Т. 10, № 2 (52). С. 87–93. DOI: 20514/2226-6704-2020-10-2-87-93.
- Роль нейтрофилов в патогенезе COVID-19 (обзор литературы) / Л.А. Ащина, Н.И. Баранова, Н.И. Микуляк, Д.И. Журавлёв // Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2024. № 1 (69). С. 178–193. DOI: 21685/2072-3032-2024-1-18.
- Система интерферона при COVID-19 / А.Н. Наровлянский, Ф.И. Ершов, А.В. Санин, А.В. Пронин // Иммунология. 2022. Т. 43, № 3. С. 245–254. DOI: 33029/0206-4952-2022-43-3-245-254.
- Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 259–268. DOI: 10.15789/2220-7619-III-1440.
- Цитокиновый шторм при COVID-19 (научный обзор) / А.Ю. Анисенкова, Д.А. Вологжанин, А.С. Голота и др. // Профилактическая и клиническая медицина. 2021. № 1. С. 89–95. DOI:47843/2074-9120_2021_1_89.
- Цитокины в плазме крови больных COVID-19 в острой фазе заболевания и фазе полного выздоровления / Н.А. Арсентьева, Н.Е. Любимова, О.К. Бацунов и др. // Медицинская иммунология. 2021. Т. 23, № 2. С. 311–326. DOI: 10.15789/1563-0625-PCI-2312.
- Шумпей Й., Есиюки К., Кусуки Н. Новая коронавирусная болезнь (COVID-19) и «цитокиновый шторм». Перспективы эффективного лечения с точки зрения патофизиологии воспалительного процесса // Инфекционные болезни: Новости. Мнения. Обучение. 2020. Т. 9, № 4 (35). С. 13– DOI: 10.33029/2305-3496-2020-9-4-13-25.
- Antonioli L., Fornai M., Pellegrini C., Blandizzi C. NKG2A and COVID-19: another brick in the wall. Cell. Mol. Immunol., 2020, 17(6), pp. 672–674. DOI: 10.1038/s41423-020-0450-7.
- Ashhurst A.S., Johansen M.D., Maxwell J.W.C. et al. Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice. Commun., 2022, vol, 13(1), 6972. DOI: 10.1038/s41467-022-34297-3.
- Barnova M., Bobcakova A., Urdova V. et al. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19. Res., 2021, vol. 70(s2), pp. S227–S247. DOI: 10.33549/physiolres.934757.
- Barrett D. IL-6 Blockade in Cytokine Storm Syndromes. Exp. Med. Biol., 2024, vol. 1448, pp. 565–572. DOI: 10.1007/978-3-031-59815-9_37.
- Blot M., Bour J.B., Quenot J.P. et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome [published correction appears in Transl. Med. 2021 Mar 8;19(1):100. DOI: 10.1186/s12967-021-02746-0.]. J. Transl. Med., 2020, vol. 18(1), 457. DOI: 10.1186/s12967-020-02646-9.
- Boechat J.L., Chora I., Morais A., Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology – Current perspectives. Pulmonology, 2021, vol. 27(5), pp.423–437. DOI: 10.1016/j.pulmoe.2021.03.008.
- Cai G., Du M., Bossé Y. et al. SARS-CoV-2 Impairs Dendritic Cells and Regulates DC-SIGN Gene Expression in Tissues. J. Mol. Sci., 2021, vol. 22(17), 9228. DOI: 10.3390/ijms22179228.
- Carsetti R., Zaffina S., Piano Mortari E. et al. Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases. Immunol., 2020, vol. 11, 610300. DOI: 10.3389/fimmu.2020.610300.
- Castanier C., Zemirli N., Portier A. et al. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol., 2012, vol. 10, 44. DOI: 10.1186/1741-7007-10-44.
- Cheng J., Wang H., Li C. et al. Characteristics of cytokines/chemokines associated with disease severity and adverse prognosis in COVID‑19 patients. Frontiers in Immunology, 2024, vol. 15. DOI: 10.3389/fimmu.2024.1464545.
- Cong B., Dong X., Yang Z. et al. Single-cell spatiotemporal analysis of the lungs reveals Slamf9 macrophages involved in viral clearance and inflammation resolution. Cell Discov., 2024, vol. 10(1), 104. DOI: 10.1038/s41421-024-00734-4.
- Date Y., Ebisawa M., Fukuda S. et al. NALT M cells are important for immune induction for the common mucosal immune system. Immunol., 2017, vol. 29(10), pp. 471–478. DOI: 10.1093/intimm/dxx064.
- Delaunay C., Pollastri S., Thépaut M. et al. Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN. Sci., 2024, Published online Aug. 27. DOI: 10.1039/d4sc02980a.
- D’Rozario R., Raychaudhuri D., Bandopadhyay P. et al. Circulating Interleukin-8 Dynamics Parallels Disease Course and Is Linked to Clinical Outcomes in Severe COVID-19. Viruses., 2023, vol. 15(2), 549. DOI: 10.3390/v15020549.
- Falck-Jones S., Österberg B., Smed-Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. Intern. Med., 2023, vol. 293(2), pp. 130–143. DOI: 10.1111/joim.13559.
- Frazier W.J., Hall M.W. Immunoparalysis and adverse outcomes from critical illness. Pediatr Clin. North. Am., 2008, vol. 55(3), pp. 647–668. DOI: 10.1016/j.pcl.2008.02.009.
- Frischbutter S., Durek P., Witkowski M. et al. Serum TGF-β as a predictive biomarker for severe disease and fatality of COVID-19. J. Immunol., 2023, vol. 53(10), e2350433. DOI: 10.1002/eji.202350433.
- Galeano Reyes S.A., Dhimes Tejeda P., Steen B. et al. Cytopathological Findings in Bronchoalveolar Lavage from Patients with COVID-19. Acta Cytol., 2022, vol. 66(6), pp. 532–541. DOI: 10.1159/000525339.
- Gallo O., Locatello L.G., Mazzoni A. et al. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol., 2021, 14(2), pp. 305–316. DOI: 10.1038/s41385-020-00359-2.
- Ge J. The COVID-19 pandemic in China: from dynamic zero-COVID to current policy. COVID-19-Pandemie in China: von der dynamischen Null-COVID- zur heutigen Politik. Herz., 2023, vol. 48(3), pp. 226–228. DOI: 10.1007/s00059-023-05183-5.
- Gong F., Dai Y., Zheng T. et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. Clin. Invest., 2020, vol. 130(12), pp. 6588–6599. DOI: 10.1172/JCI141054.
- Gunasena M., Alles M., Wijewantha Y. et al. Synergy Between NK Cells and Monocytes in Potentiating Cardiovascular Disease Risk in Severe COVID-19. Thromb. Vasc. Biol., 2024, vol. 44(10), pp. e243–e261. DOI: 10.1161/ATVBAHA.124.321085.
- Gupta G., Shareef I., Tomar S. et al. Th1/Th2/Th17 Cytokine Profile among Different Stages of COVID-19 Infection. Acad. Sci. Lett., 2022, vol. 45(4), pp. 363–369. DOI: 10.1007/s40009-022-01123-9.
- Gusev E., Sarapultsev A., Solomatina L., Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int. J. Mol. Sci., 2022, 23(3), 1716. DOI: 10.3390/ijms23031716.
- Gutierrez-Chavez C., Aperrigue-Lira S., Ortiz-Saavedra B., Paz I. Chemokine receptors in COVID-19 infection. Rev. Cell Mol. Biol., 2024, vol. 388, pp. 53–94. DOI: 10.1016/bs.ircmb.2024.05.002.
- Hammer Q., Cuapio A., Bister J. et al. NK cells in COVID-19-from disease to vaccination. Leukoc. Biol., 2023, vol. 114(5), pp. 507–512. DOI: 10.1093/jleuko/qiad031.
- Hasan M.Z., Islam S., Matsumoto K., Kawai T. SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Rep., 2021, vol. 11(1), 16814. DOI: 10.1038/s41598-021-96110-3. Published 2021 Aug 19.
- Hasan M.Z., Claus M., Krüger N. et al. SARS-CoV-2 infection induces adaptive NK cell responses by spike protein-mediated induction of HLA-E expression. Microbes. Infect., 2024, vol. 13(1), 2361019. DOI: 10.1080/22221751.2024.2361019.
- Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology, 2022, 30(3), pp. 789–798. DOI: 10.1007/s10787-022-00992-2.
- Hayashi H., Sun J., Yanagida Y. et al. Preclinical study of a DNA vaccine targeting SARS-CoV- Curr. Res. Transl. Med., 2022, vol. 70(4), 103348. DOI: 10.1016/j.retram.2022.103348.
- Hernández-Blanco C., Al-Akioui-Sanz K., Herrera L. et al. The phase I RELEASE clinical trial to evaluate the safety of NK cells in COVID-19. iScience, 2024, vol. 28(2), 111698. DOI: 10.1016/j.isci.2024.111698.
- Herrera L., Martin-Inaraja M., Santos S. et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology, 2022, vol. 165(2), pp. 234–249. DOI: 10.1111/imm.13432.
- Holmes E.C. The Emergence and Evolution of SARS-CoV-2. Rev. Virol., 2024, vol. 11(1), pp. 21–42. DOI: 10.1146/annurev-virology-093022-013037.
- Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19 [published correction appears in Rev. Microbiol. 2022 May;20(5):315. DOI: 10.1038/s41579-022-00711-2.]. Nat. Rev. Microbiol., 2021, vol. 19(3), pp. 141–154. DOI: 10.1038/s41579-020-00459-7.
- Isazadeh A., Heris J.A., Shahabi P. et al. Pattern-recognition receptors (PRRs) in SARS-CoV- Life Sci., 2023, vol. 329, 121940. DOI: 10.1016/j.lfs.2023.121940.
- Jalloh S., Olejnik J., Berrigan J. et al. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. Pathog., 2022, vol. 18(10), e1010479. DOI: 10.1371/journal.ppat.1010479.
- Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents [published correction appears in Hosp. Infect. 2020 Jun 17:S0195-6701(20)30285-1. DOI: 10.1016/j.jhin.2020.06.001.]. J. Hosp. Infect., 2020, vol. 104(3), pp. 246–251. DOI: 10.1016/j.jhin.2020.01.022.
- Kared H., Redd A.D., Bloch E.M. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. Clin. Invest., 2021, vol. 131(5), e145476. DOI: 10.1172/JCI145476.
- Karki R., Kanneganti T.D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J. Transl. Med., 2022, 20(1), 542. DOI: 10.1186/s12967-022-03767-z.
- Karki R., Sharma B.R., Tuladhar S. et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell., 2021, vol. 184(1), pp. 149–168.e17. DOI: 10.1016/j.cell.2020.11.025.
- Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J.Med. Virol., 2021, 93(5), pp. 2735–2739. DOI: 10.1002/jmv.26826.
- La Sala L., Gandini S., Bruno A. et al. SARS-CoV-2 Immunization Orchestrates the Amplification of IFNγ-Producing T Cell and NK Cell Persistence. Immunol., 2022, vol. 13, 798813. DOI: 10.3389/fimmu.2022.798813.
- Lee J., Ahn G.-W., Choi J.-Y. et al. Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19. Genomics & Informatics., 2022, vol. 20(2), e17. DOI: 10.5808/gi.22006.
- Ma M., Jiang W., Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity, 2024, vol. 57(4), pp. 752–771. DOI: 10.1016/j.immuni.2024.03.002.
- Margaroli C., Fram T., Sharma N.S. et al. Interferon-dependent signaling is critical for viral clearance in airway neutrophils. JCI Insight, 2023, vol. 8(10), e167042. Published 2023 May 22. DOI: 10.1172/jci.insight.167042.
- Matic S., Popovic S., Djurdjevic P. et al. SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocyte subsets. PLoS One, 2020, vol. 15(12), e0241097. DOI: 10.1371/journal.pone.0241097.
- Mazaleuskaya L., Veltrop R., Ikpeze N. et al. Protective role of Toll-like Receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses, 2012, vol. 4(5), pp. 901–923. DOI: 10.3390/v4050901.
- Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages [published correction appears in Rev. Immunol. 2020 Jul;20(7):448. DOI: 10.1038/s41577-020-0353-y]. Nat. Rev. Immunol., 2020, vol. 20(6), pp. 355–362. DOI: 10.1038/s41577-020-0331-4.
- Oja A.E., Saris A., Ghandour C.A. et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. J. Immunol., 2020, vol. 50(12), pp. 1998–2012. DOI: 10.1002/eji.202048908.
- Oja A.E., van Lier R.A.W., Hombrink P. Two sides of the same coin: Protective versus pathogenic CD4 resident memory T cells. Sci. Immunol., 2022, 7(70), eabf9393. DOI: 10.1126/sciimmunol.abf9393.
- Panda R., Castanheira F.V., Schlechte J.M. et al. A functionally distinct neutrophil landscape in severe COVID-19 reveals opportunities for adjunctive therapies. JCI Insight, 2022, vol. 7(2), e152291. DOI: 10.1172/jci.insight.152291.
- Papageorgiou D., Gogos C., Akinosoglou K. Macrophage Activation Syndrome in Viral Sepsis. Viruses, 2024, vol. 16(7), 1004. DOI: 10.3390/v16071004.
- Paranga T.G., Mitu I., Pavel-Tanasa M. et al. Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches. J. Mol. Sci., 2024, vol. 25(21), 11411. DOI: 10.3390/ijms252111411.
- Payen D., Cravat M., Maadadi H. et al. A Longitudinal Study of Immune Cells in Severe COVID-19 Patients. Frontiers in Immunology, 2020, 11, 580250. DOI: 10.3389/fimmu.2020.580250.
- Peng J., Qi D., Yuan G. et al. Diagnostic value of peripheral hematologic markers for coronavirus disease 2019 (COVID-19): A multicenter, cross-sectional study. Clin. Lab. Anal., 2020, vol. 34(10), e23475. DOI: 10.1002/jcla.23475.
- Ramasamy S., Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis [published correction appears in Microbiol. Rev. 2021 Dec 15;34(4):e0016321. DOI: 10.1128/CMR.00163-21.]. Clin. Microbiol. Rev., 2021, vol. 34(3), e00299-20. DOI: 10.1128/CMR.00299-20.
- Salvi V., Nguyen H.O., Sozio F. et al. SARS-CoV-2-associated ssRNAs activate inflammation and immunity via TLR7/8. JCI Insight, 2021, vol. 6(18), e150542. DOI: 10.1172/jci.insight.150542.
- Sanchez David R.Y., Combredet C., Najburg V. et al. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Signal., 2019, vol. 12(601), eaar3993. DOI: 10.1126/scisignal.aar3993 Published 2019 Oct 1.
- Sato K., Kawakami K. PAMPs and Host Immune Response in Cryptococcal Infection. Med. Mycol. J., 2022, 63(4), pp. 133–138. DOI: 10.3314/mmj.22.005.
- Sattler A., Angermair S., Stockmann H. et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. Clin. Invest., 2020, vol. 130(12), pp. 6477–6489. DOI: 10.1172/JCI140965.
- Sattler A., Gamradt S., Proß V. et al. CD3 downregulation identifies high-avidity, multipotent SARS-CoV-2 vaccine- and recall antigen-specific Th cells with distinct metabolism. JCI Insight, 2024, vol. 9(4), e166833. DOI: 10.1172/jci.insight.166833.
- Schifanella L., Anderson J., Wieking G. et al. The Defenders of the Alveolus Succumb in COVID‑19 Pneumonia to SARS‑CoV‑2 and Necroptosis, Pyroptosis, and PANoptosis. Infect. Dis., 2023, vol. 227(11), pp. 1245–1254. DOI: 10.1093/infdis/jiad056.
- Schultze J.L., Aschenbrenner A.C. COVID-19 and the human innate immune system. Cell, 2021, vol. 184(7), pp. 1671–1692. DOI: 10.1016/j.cell.2021.02.029.
- Sepahi A., Salinas I. The evolution of nasal immune systems in vertebrates. Mol Immunol., 2016, vol. 69, pp. 131–138. DOI: 10.1016/j.molimm.2015.09.008.
- Sharma A., Kontodimas K., Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid. Redox Signal., 2021, 35(16), pp. 1376–1392. DOI: 10.1089/ars.2021.0167.
- Sosa-Hernández V.A., Torres-Ruíz J., Cervantes-Díaz R. et al. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Frontiers in Immunology, 2020, vol. 11, 611004. DOI: 10.3389/fimmu.2020.611004.
- Soyyiğit Ş., Öksüzer Çimşir D., Öncül A. et al. Analysis of peripheral lymphocyte subsets and T-cell exhaustion in SARS-CoV-2 Infection. SARS-CoV-2 enfeksiyonunda periferik lenfosit alt gruplarının ve T hücre yorgunluğunun değerlendirilmesi. Tuberk. Toraks., 2024, 72(2), pp. 152–166. DOI: 10.5578/tt.202402929.
- Su H.C., Jing H., Zhang Y. Members of the COVID Human Genetic Effort, Casanova J.L. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu. Rev. Immunol., 2023, 41, pp. 561–585. DOI: 10.1146/annurev-immunol-101921-050835.
- Sun S., Cai X., Wang H. et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Chim. Acta, 2020, vol. 507, pp. 174–180. DOI: 10.1016/j.cca.2020.04.024.
- Takahashi T., Nakano Y., Onomoto K. et al. Virus Sensor RIG-I Represses RNA Interference by Interacting with TRBP through LGP2 in Mammalian Cells. Genes (Basel), 2018, vol. 9(10), 511. DOI: 10.3390/genes9100511.
- Tripathy A.S., Wagh P., Akolkar K. et al. Association of inhibitory NKG2A and activating NKG2D natural killer cell receptor genes with resistance to SARS-CoV-2 infection in a western Indian population. Virol., 2023, vol. 168(9), 237. DOI: 10.1007/s00705-023-05861-z.
- Umakanthan S., Sahu P., Ranade A.V. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Med. J., 2020, vol. 96(1142), pp. 753–758. DOI: 10.1136/postgradmedj-2020-138234.
- van der Mescht M.A., de Beer Z., Steel H.C. et al. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clinical Immunology, 2024, vol. 266, 110323. DOI: 10.1016/j.clim.2024.110323.
- Van der Sluis R.M., Holm C.K., Jakobsen M.R. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Rep., 2022, vol. 40(4), 111148. DOI: 10.1016/j.celrep.2022.111148.
- van Doremalen N., Bushmaker T., Morris D.H. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. Engl. J. Med., 2020, vol. 382(16), pp. 1564–1567. DOI: 10.1056/NEJMc2004973.
- Villalobos-Gómez F.D.R., Palacios-Marmolejo A., Salinas-Gutiérrez R., Lagunes-Servín H.E. Respuesta inmune innata de interferón gamma en pacientes graves positivos a COVID-19 [Innate immune response to interferon gamma in severe Covid-19 positive patients]. Med. Inst. Mex. Seguro. Soc., 2025, vol. 63(2), e6353. DOI: 10.5281/zenodo.14617070.
- Walter M.R. The Role of Structure in the Biology of Interferon Signaling. Immunol., 2020, vol. 11, 606489. DOI: 10.3389/fimmu.2020.606489.
- Wang J.G., Zhong Z.J., Mo Y.F. et al. Epidemiological features of coronavirus disease 2019 in children: a meta-analysis. Rev. Med. Pharmacol. Sci., 2021, vol. 25(2), pp. 1146–1157. DOI: 10.26355/eurrev20210124685.
- Weiskopf D., Schmitz K.S., Raadsen M.P. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Immunol., 2020, vol. 5(48), eabd2071. DOI: 10.1126/sciimmunol.abd2071.
- Wigerblad G., Warner S.A., Ramos-Benitez M.J. et al. Spleen tyrosine kinase inhibition restores myeloid homeostasis in COVID-19. Science Advances, 2023, vol. 9(1), eade8272. DOI: 10.1126/sciadv.ade8272.
- Wu T.T., Travaglini K.J., Rustagi A. et al. Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. Exp. Med., 2024, vol. 221(6), e20232192. DOI: 10.1084/jem.20232192.
- Yang Q., Song W., Reheman H. et al. PANoptosis, an indicator of COVID-19 severity and outcomes. Bioinform., 2024, vol. 25(3), bbae124. DOI: 10.1093/bib/bbae124.
- Yip C.Y.C., Yap E.S., De Mel S. et al. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection. J. Haematol., 2020, vol. 190(1), pp. 33–36. DOI: 10.1111/bjh.16847.
- Zafarani A., Razizadeh M.H., Pashangzadeh S. et al. Natural killer cells in COVID-19: from infection, to vaccination and therapy. Virol., 2023. DOI: 10.2217/fvl-2022-0040.
- Zhao X.N., You Y., Cui X.M. et al. Single-cell immune profiling reveals distinct immune response in asymptomatic COVID-19 patients. Signal Transduct. Target Ther., 2021, vol. 6(1), 342. DOI: 10.1038/s41392-021-00753-7.
- Zhou Y.Z., Teng X.B., Han M.F. et al. The value of PCT, IL-6, and CRP in the early diagnosis and evaluation of COVID-19. Rev. Med. Pharmacol. Sci., 2021, vol. 25(2), pp. 1097–1100. DOI: 10.26355/eurrev20210124680.
- Zingaropoli M.A., Nijhawan P., Carraro A. et al. Increased sCD163 and sCD14 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes, Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19 Pneumonia. Immunol., 2021, vol. 12, 627548. DOI: 10.3389/fimmu.2021.627548.
Сведения об авторах
- Михайлов Александр Олегович
- кандидат медицинских наук, доцент кафедры инфекционных болезней, Тихоокеанский государственный медицинский университет, Россия, Владивосток (mao1991@mail.ru; ORCID: https://orcid.org/0000-0002-2719-3629)
- Плехова Наталья Геннадьевна
- доктор биологических наук, заведующая междисциплинарным научно-исследовательским центром, Тихоокеанский государственный медицинский университет, Россия, Владивосток (pl_nat@hotmail.com; ORCID: https://orcid.org/0000-0002-8701-7213)
- Торопкова Людмила Александровна
- врач-гастроэнтеролог, Краевая клиническая больница № 2, Россия, Владивосток (nedovesova73@mail.ru; ORCID: https://orcid.org/0009-0003-5204-809X)
- Сокотун Светлана Анатольевна
- кандидат медицинских наук, доцент кафедры инфекционных болезней, Тихоокеанский государственный медицинский университет, Россия, Владивосток (sokotun.s@mail.ru; ORCID: https://orcid.org/0000-0003-3807-3259)
- Белевич Иван Олегович
- ассистент кафедры инфекционных болезней, Тихоокеанский государственный медицинский университет, Россия, Владивосток (belevich_1998@mail.ru; ORCID: https://orcid.org/0009-0001-9480-2199)
Ссылка на статью
Михайлов А.О., Плехова Н.Г., Торопкова Л.А., Сокотун С.А., Белевич И.О. Роль клеток врожденного иммунитета в патогенезе коронавирусной инфекции, вызванной SARS-CoV-2 [Электронный ресурс] // Acta medica Eurasica. – 2025. – №3. – С. 68-97. – URL: https://acta-medica-eurasica.ru/single/2025/3/8/. DOI: 10.47026/2413-4864-2025-3-68-97.