Статья журнала

Козлов В.А., Сапожников С.П., Голенков А.В., Шептухина А.И., Николаева О.В.

Амилоид – это плохо? Амилоид с точки зрения супрамолекулярной химии

Ключевые слова: амилоид, нанотрубки, супрамолекулярные взаимодействия, параметаболизм

Амилоидная болезнь и процесс амилоидообразования рассмотрены с точки зрения супрамолекулярной химии и адаптационной теории. Сделан вывод, что амилоидоз – саногенетическая реакция, приводящая к болезни в силу избыточности молекулярного ответа. Мы предполагаем, что белки-предшественники амилоида вступают в супрамолекулярное взаимодейстие с образованием нанотрубок, только попав в неблагоприятное ионно-молекулярное окружение. Истинная роль синтеза белков-предшественников амилоида при врожденной или приобретенной хронической воспалительной патологии остается неизвестной. Ставится вопрос о необходимости выяснения физиологической роли амилоидных фрагментов.

Kozlov V., Sapozhnikov S., Golenkov A., Sheptukhina A., Nikolaeva O.

Amiloid – it is bad? AMiloid from the point of view of supramolecular chemistry

Keywords: amiloid, nanotubes, supramolecular interactions, parametabolism

The Amiloid illness and process formation of an amiloid are considered from the point of view of supramolecular chemistry and the adaptation theory. The conclusion that amiloidos – the sanogenetic reaction leading to an illness owing to redundancy of the molecular answer is drawn. We assume that squirrels predecessors of an amiloid enter in supramolecular interaction with formation of nanotubes only having got to an adverse ion-molecular environment. What true role of synthesis of proteins of predecessors of an amiloid at the congenital or acquired chronic inflammatory pathology remains to unknown. The question of need of clarification of a physiological role the amiloid of fragments is raised.

Литература

  1. Ансари Н.А., Рашид З. Неферментативное гликирование белков: от диабета до рака // Биомедицинская химия. 2010. Т. 56, вып. 2. C. 168–178.
  2. Воропай Е.С., Самцов М.П., Каплевский К.Н., Маскевич А.А., Степуро В.И., Поварова О.И., Кузнецова И.М., Туроверов К.К., Финк А.Л., Уверский В.Н. Cпектральные свойства тиофлавина Т и его комплексов с амилоидными фибриллами // Журнал прикладной спектроскопии. 2003. Вып. 70, № 6. C. 767–773.
  3. Дильман В.М. Четыре модели медицины. М.: Медицина, 1987. 288 с.
  4. Козлов В.А., Сапожников С.П., Шептухина А.И., Голенков А.В. Параметаболизм как неспецифический модификатор супрамолекулярных взаимодействий в живых системах // Вестник РАМН. 2015. № 4. С. 397–402.
  5. Козлов В.А., Сапожников С.П., Шептухина А.И., Голенков А.В. Сравнительный анализ различных моделей амилоидоза // Вестник РАМН. 2015. № 1. С. 5–11.
  6. Кудинова Н.В., Кудинов А.Р., Березов Т.Т. Aмилоид бета: функциональный белок или биологический мусор? // Биомедицинская химия. 2007. Т. 53, вып. 2. С. 119–127.
  7. Кузнецова И.М. Механизмы возникновения и свойства промежуточных, неправильно свернутых и агрегированных форм белков: автореф. дис. … д-ра биол. наук. СПб., 2006. 40 с.
  8. Николаева О.В., Шептухина А.И., Козлов В.А., Сапожников С.П. Морфологические изменения паренхиматозных органов при экспериментальной модели амилоидоза // Международный студенческий научный вестник. 2015. № 2. С. 5859 [Электронный ресурс]. URL: http://www.eduherald.ru/pdf/ 2015/2/12155.pdf.
  9. Baldwin A.J., Knowles T.P., Tartaglia G., Fitzpatrick A., Devlin G., Shammas S., Waudby C.A., Mossuto M.F., Gras S.L., Christodoulou J., Anthony-Cahill S.J., Barker P.D., Vendruscolo M., Dobson C.M. Metastability of native proteins and the phenomenon of amyloid formation. Am. Chem. Soc., 2011, vol.133, pp. 14160–14163.
  10. Bancroft J.D., Stevens A. Theory and practice of histological techniques. 2nd Edinburgh, London, Churchill Livingstone, 1982.
  11. Baxa U., Speransky V., Steven A.C., Wickner R.B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 5253–5260.
  12. Bonar L.C., Cohen A.S., Skinner M. Characterization of the amyloid fibril as a cross-beta protein. Soc. Exp. Biol. Med., 1969, vol. 131, no. 4, pp. 1373–1375.
  13. Brigger D., Muckle T. Comparison of Sirius red and Congo red as stains for amyloid in animal tissues. Histochem. Cytochem., 1975, vol. 23, no. 1, pp. 84–88.
  14. Burns J., Pennock C.A., Stoward P.J. The specificity of the staining of amyloid deposits with thioflavine T. pathology and bacteriology, 1967, vol. 94, p. 337.
  15. Carrotta R., Manno M., Bulon, D., Martorana V., San Biagio P. L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  16. Caudron F., Barral Y. A Super-Assembly of Whi3 Encodes Memory of Deceptive Encounters by Single Cells during Yeast Courtship. Cell., 2013, vol. 155, no. 6, pp. 1244–1257.
  17. Chapman M.R., Robinson L.S., Pinkner J.S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science (New York), 2002, vol. 295, pp. 851–855.
  18. Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Rev. Biochem., 2006, vol. 75, pp. 333–366.
  19. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersa F.G.H., Dijkhuizen L., Wosten H.A.B. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes & development, 2003, no. 17, pp. 1714–1726.
  20. David M.P., Concepcion G.P., Padlan E.A. Using simple artificial intelligence methods for predicting amyloidogenesis in BMC Bioinformatics, 2010, vol. 11, no. 79, 13 p.
  21. Dobson C.M. Protein folding and misfolding. Nature, 2003, vol. 426(6968), pp. 884–890.
  22. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M., Balch W.E., Kelly J.W. Functional amyloid formation within mammalian tissue. PLos Biol., 2006, no. 4, pp. 6–26.
  23. Gasior P., Kotulska M. FISH Amyloid a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of BMC Bioinformatics, 2014, vol. 15, no. 54, 8 p.
  24. Glenner G.G., Terry W., Harada M., Isersky C., Page D. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, vol. 172, no. 3988, pp. 1150–1151.
  25. Grimaldi A., Girardello R., Malagoli D., Falabella P., Tettamanti G., Valvassori R., Ottaviani E., de Eguileor M. Amyloid/Melanin distinctive mark in invertebrate immunity. ISJ, 2012, 9, pp. 153–162.
  26. Hamley W. Peptide fibrillization. Angew Chem. Int. Ed. Engl., 2007, vol. 46, no. 43, pp. 8128–8147.
  27. Hamodrakas S.J., Hoenger A., Iconomidou V.A. Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. Struct. Biol., 2004, vol. 145, pp. 226–235.
  28. Hurshman A.R., White J.Т., Powers E.T., Kelly J.W. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry, 2004, 43, pp. 7365–7381.
  29. Knowles T.P.J., Vendruscolo М., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 6, pp. 384–396.
  30. Koudinov A.R., Berezov T.T., Koudmova N.V. The Levels of Soluble Amyloid Beta in Different High Density Lipoprotein Subfractions Distinguish Alzheimer’s and Normal Aging Cerebrospinal Fluid Implication for Brain Cholesterol Pathology. Lett., 2001, vol. 314, pp. 115–118.
  31. Koudinov A.R., Koudinova N.V. Amyloid beta protein restores hippocampal long-term potentiation: a central role for cholesterol? Lipids., 2003, vol. 1, no. 8. Available at: http://neurobiologyoflipids.org/content/1/8.
  32. Koudinova N.V. Alzheimer’s amyloid beta oligomers and lipoprotein apoAb: mistaken identity is possible. Bioessays., 2003, vol. 25, p. 1024.
  33. Kumar , Udgaonkar J.B. Conformational conversion may precede or follow aggregate elongation on alternative pathways ofamyloid protofibril formation. J. Mol. Biol., 2009, vol. 385, no. 4, pp. 1266–1276.
  34. Kumar , Udgaonkar J.B. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry, 2009, vol.48, no. 27, pp. 6441–6449.
  35. Kumar , Udgaonkar J.B. Structurally distinct amyloidprotofibrils form on separate pathways of aggregation of a smallprotein. Biochemistry, 2009, vol. 48, pp. 6441–6449.
  36. Kurnellas P., Adams C.M., Sobel R.A., Steinman L., Rothbard J.B. Amyloid Fibrils Composed of Hexameric Peptides Attenuate Neuroinflammation. Sci. Transl. Med., 2013, vol. 5, Issue 179, p. 179ra42.
  37. Malin D.H., Crothers M.K., Lake J.R., Goyarzu P., Plotner R.E., Garcia S.A., Spell S.H., Tomsic B.J., Giordano T., Kowall N.W. Hippocampal injections of amyloid beta-peptide 1-40 impair subsequent one-trial/day reward learning. Learn. Mem., 2001, vol. 76, no. 2, pp. 125–137.
  38. McDonald M.P., Dahl E.E., Overmier J.B. Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Neural. Biol., 1994, vol. 62, no. 1, pp. 60–67.
  39. Modle, A.J., Gast K., Lutsch G., Damaschun G. Assembly of amyloid protofibrils via critical oligomers~a novel pathway of amyloid formation. Mol. Biol., 2003, vol. 325, pp. 135–148.
  40. Carrotta R., Manno M., Bulon D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  41. Montero A., Gastaminza P., Law M., Cheng G., Chisari F.V., Ghadiri M.R. Self-assembling peptide nanotubes with antiviral activity against hepatitis C virus. Biol., 2011, vol. 18, no. 11, pp. 1453–1462.
  42. Perutz M.F., Finch J.T., Berriman J., Lesk A. Amyloid fibers are water-filled nanotubes. Natl. Acad. Sci. USA, 2002, vol. 99, no. 8, pp. 5591–5595.
  43. Plant D., Boyle J.P., Smith I.F., Peers C., Pearson H.A. The production of amyloid beta peptide is a critical requirement for the viability ofcentral neurons. J. Neurosci., 2003, vol. 23, pp. 5531–5535.
  44. Romhányi G. Selective demonstration of amyloid deposits and methodical possibilities of analysis of their ultrastructural differences. Allg. Pathol., 1979, vol. 123, no. 1-2, pp. 9–16.
  45. Rothbard J.B., Zhao X., Sharpe O., Strohman M.J., Kurnellas M., Mellins E.D., Robinson W.H., Steinman L. Chaperone activity of α,β-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. Immunol., 2011, vol. 186, no. 7, pp. 4263–4268.
  46. Sawaya M.R., Sambashivan S., Nelson R., Ivanova M.I., Sievers S.A., Apostol M.I., Thompson M.J., Balbirnie M., Wiltzius Jed J. W., McFarlane H.T., Madsen A., Riekel C., Eisenberg D. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature, 2007, vol. 447, pp. 453–457.
  47. Serio T.R., Cashikar A.G., Kowal A.S., Sawicki J., Moslehi J.J., Serpell L., Arnsdorf M.F., Lindquist S.L. Nucleated conformation conversion and the replication of conformational information by a prion determinant. Science, 2000, vol. 289, pp. 1317–1321.
  48. Shirahama T., Cohen A.S. High-resolution electron microscopic analysis of the amyloid fibril. Cell. Biol., 1967, vol. 33, no. 3, pp. 679–708.
  49. Slotta U., Hess S., Spiess K., Stromer Т., Serpell L., Scheibel T. Spider silk and amyloid fibrils: a structural comparison. Biosci., 2007, no. 7, pp. 183–188.
  50. Stanislawski J., Kotulska M., Unold O. Machine learning methods can replace 3D profile method in classification of amyloidogenic BMC Bioinformatics, 2013, vol. 14, no. 21, 9 p.
  51. Sunde M., Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in protein chemistry, 1997, vol. 50, pp. 123–159.
  52. Wojciechowicz , Lu C.F., Kurjan J., Lipke P.N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol. Cell Biol., 1993, vol. 13, no. 4, pp. 2554–2563.
  53. Xu S., Bervis B., Arnsdorf M.F. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? J., 2001, vol. 81, pp. 446–454.
  54. Zhang C., Khandelwal P.J., Chakraborty R., Cuellar T.L.,Sarangi S., Patel S.A., Cosentino C.P., O’Connor M., Lee J.C., Tanzi R.E., Saunders A.J. An AICD-based functional screen to identify APP metabolism regulators. Neurodegener., 2007, vol. 2, no. 15, 19 p.

References

  1. Ansari N.A., Rashid Z. Nefermentativnoe glikirovanie belkov: ot diabeta do raka [No fermentativ glikirovation of proteins: from diabetes to a cancer]. Biomeditsinskaya khimiya [Biomedical chemistry], 2010, vol. 56, iss. 2, pp. 168–178.
  2. Voropai E.S., Samtsov M.P., Kaplevskii K.N., Maskevich A.A., Stepuro V.I., Povarova O.I., Kuznetsova I.M., Turoverov K.K., Fink A.L., Uverskii V.N. Cpektral’nye svoistva tioflavina T i ego kompleksov s amiloidnymi fibrillami [Spectral properties of a tioflavin of T and its complexes with amiloid fibrilla]. prikl. Spektr [Journal of applied spectroscopy], 2003, vol. 70, no. 6, pp. 767–773.
  3. Dil’man V.M. Chetyre modeli meditsiny [Four models of medicine]. Moscow, Meditsina Publ., 1987, 288 p.
  4. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Golenkov A.V. Parametabolizm kak nespetsificheskii modifikator supramolekulyarnykh vzaimodeistvii v zhivykh sistemakh [Parametabolism as the nonspecific modifier of supramolecular interactions in live systems]. Vestnik RAMN [Bulletin of the Russian Academy of Medical Science], 2015, no. 4, pp. 397–402.
  5. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Golenkov A.V. Sravnitel’nyi analiz razlichnykh modelei amiloidoza [Comparative analysis of various models of an amiloidoz]. Vestnik RAMN [Bulletin of the Russian Academy of Medical Science], 2015, no. 1, pp. 5–11.
  6. Kudinova N.V., Kudinov A.R., Berezov T.T. Amiloid beta: funktsional’nyi belok ili biologicheskii musor? [Amiloid beta: functional protein or biological garbage?]. Biomeditsinskaya khimiya [Biomedical chemistry], 2007, vol. 53, iss. 2, pp. 119–127.
  7. Kuznetsova I.M. Mekhanizmy vozniknoveniya i svoistva promezhutochnykh, nepravil’no svernutykh i agregirovannykh form belkov: avtoref. dis. … d-ra biol. nauk [Mechanisms of emergence and property of the intermediate, incorrectly curtailed and aggregated forms of proteins. Doct. Diss.]. St. Petersburg, 2006, 40 p.
  8. Nikolaeva O.V., Sheptukhina A.I., Kozlov V.A., Sapozhnikov S.P. Morfologicheskie izmeneniya parenkhimatoznykh organov pri eksperimental’noi modeli amiloidoza [Morphological changes of parenchymatous bodies at experimental model of an amiloidoz]. Mezhdunarodnyi studencheskii nauchnyi vestnik [International student’s scientific bulletin], 2015, no. 2, pp. 58–59. Available at: http://www.eduherald.ru/pdf/2015/2/12155.pdf.
  9. Baldwin A.J., Knowles T.P., Tartaglia G., Fitzpatrick A., Devlin G., Shammas S., Waudby C.A., Mossuto M.F., Gras S.L., Christodoulou J., Anthony-Cahill S.J., Barker P.D., Vendruscolo M., Dobson C.M. Metastability of native proteins and the phenomenon of amyloid formation. Am. Chem. Soc., 2011, vol.133, pp. 14160–14163.
  10. Bancroft J.D., Stevens A. Theory and practice of histological techniques. 2nd Edinburgh, London, Churchill Livingstone, 1982.
  11. Baxa U., Speransky V., Steven A.C., Wickner R.B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Natl. Acad. Sci. USA, 2002, vol. 99,
    pp. 5253–5260.
  12. Bonar L.C., Cohen A.S., Skinner M. Characterization of the amyloid fibril as a cross-beta protein. Soc. Exp. Biol. Med., 1969, vol. 131, no. 4, pp. 1373–1375.
  13. Brigger D., Muckle T. Comparison of Sirius red and Congo red as stains for amyloid in animal tissues. Histochem. Cytochem., 1975, vol. 23, no. 1, pp. 84–88.
  14. Burns J., Pennock C.A., Stoward P.J. The specificity of the staining of amyloid deposits with thioflavine T. pathology and bacteriology, 1967, vol. 94, p. 337.
  15. Carrotta R., Manno M., Bulon, D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  16. Caudron F., Barral Y. A Super-Assembly of Whi3 Encodes Memory of Deceptive Encounters by Single Cells during Yeast Courtship. Cell., 2013, vol. 155, no. 6, pp. 1244–1257.
  17. Chapman M.R., Robinson L.S., Pinkner J.S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science (New York), 2002, vol. 295, pp. 851–855.
  18. Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Rev. Biochem., 2006, vol. 75, pp. 333–366.
  19. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersa F.G.H., Dijkhuizen L., Wosten H.A.B. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes & development, 2003, no. 17, pp. 1714–1726.
  20. David M.P., Concepcion G.P., Padlan E.A. Using simple artificial intelligence methods for predicting amyloidogenesis in BMC Bioinformatics, 2010, vol. 11, no. 79, 13 p.
  21. Dobson C.M. Protein folding and misfolding. Nature, 2003, vol. 426(6968), pp. 884–890.
  22. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M., Balch W.E., Kelly J.W. Functional amyloid formation within mammalian tissue. PLos Biol., 2006, no. 4, pp. 6–26.
  23. Gasior P., Kotulska M. FISH Amyloid a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of BMC Bioinformatics, 2014, vol. 15, no. 54, 8 p.
  24. Glenner G.G., Terry W., Harada M., Isersky C., Page D. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, vol. 172, no. 3988, pp. 1150–1151.
  25. Grimaldi A., Girardello R., Malagoli D., Falabella P., Tettamanti G., Valvassori R., Ottaviani E., de Eguileor M. Amyloid/Melanin distinctive mark in invertebrate immunity. ISJ, 2012, 9, pp. 153–162.
  26. Hamley W. Peptide fibrillization. Angew Chem. Int. Ed. Engl., 2007, vol. 46, no. 43, pp. 8128–8147.
  27. Hamodrakas S.J., Hoenger A., Iconomidou V.A. Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. Struct. Biol., 2004, vol. 145, pp. 226–235.
  28. Hurshman A.R., White J.Т., Powers E.T., Kelly J.W. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry, 2004, 43, pp. 7365–7381.
  29. Knowles T.P.J., Vendruscolo М., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 6, pp. 384–396.
  30. Koudinov A.R., Berezov T.T., Koudmova N.V. The Levels of Soluble Amyloid Beta in Different High Density Lipoprotein Subfractions Distinguish Alzheimer’s and Normal Aging Cerebrospinal Fluid Implication for Brain Cholesterol Pathology. Lett., 2001, vol. 314, pp. 115–118.
  31. Koudinov A.R., Koudinova N.V. Amyloid beta protein restores hippocampal long-term potentiation: a central role for cholesterol? Lipids., 2003, vol. 1, no. 8. Available at: http://neurobiologyoflipids.org/content/1/8.
  32. Koudinova N.V. Alzheimer’s amyloid beta oligomers and lipoprotein apoAb: mistaken identity is possible. Bioessays., 2003, vol. 25, p. 1024.
  33. Kumar S., Udgaonkar J.B. Conformational conversion may precede or follow aggregate elongation on alternative pathways ofamyloid protofibril formation. J. Mol. Biol., 2009, vol. 385, no. 4, pp. 1266–1276.
  34. Kumar S., Udgaonkar J.B. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry, 2009, vol.48, no. 27, pp. 6441–6449.
  35. Kumar S., Udgaonkar J.B. Structurally distinct amyloidprotofibrils form on separate pathways of aggregation of a smallprotein. Biochemistry, 2009, vol. 48, pp. 6441–6449.
  36. Kurnellas P., Adams C.M., Sobel R.A., Steinman L., Rothbard J.B. Amyloid Fibrils Composed of Hexameric Peptides Attenuate Neuroinflammation. Sci. Transl. Med., 2013, vol. 5, Issue 179, p. 179ra42.
  37. Malin D.H., Crothers M.K., Lake J.R., Goyarzu P., Plotner R.E., Garcia S.A., Spell S.H., Tomsic B.J., Giordano T., Kowall N.W. Hippocampal injections of amyloid beta-peptide 1-40 impair subsequent one-trial/day reward learning. Learn. Mem., 2001, vol. 76, no. 2, pp. 125–137.
  38. McDonald M.P., Dahl E.E., Overmier J.B. Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Neural. Biol., 1994, vol. 62, no. 1, pp. 60–67.
  39. Modle, A.J., Gast K., Lutsch G., Damaschun G. Assembly of amyloid protofibrils via critical oligomers~a novel pathway of amyloid formation. Mol. Biol., 2003, vol. 325, pp. 135–148.
  40. Carrotta R., Manno M., Bulon D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  41. Montero A., Gastaminza P., Law M., Cheng G., Chisari F.V., Ghadiri M.R. Self-assembling peptide nanotubes with antiviral activity against hepatitis C virus. Biol., 2011, vol. 18, no. 11, pp. 1453–1462.
  42. Perutz M.F., Finch J.T., Berriman J., Lesk A. Amyloid fibers are water-filled nanotubes. Natl. Acad. Sci. USA, 2002, vol. 99, no. 8, pp. 5591–5595.
  43. Plant D., Boyle J.P., Smith I.F., Peers C., Pearson H.A. The production of amyloid beta peptide is a critical requirement for the viability ofcentral neurons. J. Neurosci., 2003, vol. 23, pp. 5531–5535.
  44. Romhányi G. Selective demonstration of amyloid deposits and methodical possibilities of analysis of their ultrastructural differences. Allg. Pathol., 1979, vol. 123, no. 1-2, pp. 9–16.
  45. Rothbard J.B., Zhao X., Sharpe O., Strohman M.J., Kurnellas M., Mellins E.D., Robinson W.H., Steinman L. Chaperone activity of α,β-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. Immunol., 2011, vol. 186, no. 7, pp. 4263–4268.
  46. Sawaya M.R., Sambashivan S., Nelson R., Ivanova M.I., Sievers S.A., Apostol M.I., Thompson M.J., Balbirnie M., Wiltzius Jed J. W., McFarlane H.T., Madsen A., Riekel C., Eisenberg D. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature, 2007, vol. 447, pp. 453–457.
  47. Serio T.R., Cashikar A.G., Kowal A.S., Sawicki J., Moslehi J.J., Serpell L., Arnsdorf M.F., Lindquist S.L. Nucleated conformation conversion and the replication of conformational information by a prion determinant. Science, 2000, vol. 289, pp. 1317–1321.
  48. Shirahama T., Cohen A.S. High-resolution electron microscopic analysis of the amyloid fibril. Cell. Biol., 1967, vol. 33, no. 3, pp. 679–708.
  49. Slotta U., Hess S., Spiess K., Stromer Т., Serpell L., Scheibel T. Spider silk and amyloid fibrils: a structural comparison. Biosci., 2007, no. 7, pp. 183–188.
  50. Stanislawski J., Kotulska M., Unold O. Machine learning methods can replace 3D profile method in classification of amyloidogenic BMC Bioinformatics, 2013, vol. 14, no. 21, 9 p.
  51. Sunde M., Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in protein chemistry, 1997, vol. 50, pp. 123–159.
  52. Wojciechowicz , Lu C.F., Kurjan J., Lipke P.N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol. Cell Biol., 1993, vol. 13, no. 4, pp. 2554–2563.
  53. Xu S., Bervis B., Arnsdorf M.F. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? J., 2001,
    vol. 81, pp. 446–454.
  54. Zhang C., Khandelwal P.J., Chakraborty R., Cuellar T.L.,Sarangi S., Patel S.A., Cosentino C.P., O’Connor M., Lee J.C., Tanzi R.E., Saunders A.J. An AICD-based functional screen to identify APP metabolism regulators. Neurodegener., 2007, vol. 2, no. 15, 19 p.

Сведения об авторах

Козлов Вадим Авенирович
доктор биологических наук, кандидат медицинских наук, профессор кафедры медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (pooh12@yandex.ru; ORCID: https://orcid.org/0000-0001-7488-1240)
Сапожников Сергей Павлович
доктор медицинских наук, заведующий кафедрой медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (adaptogon@mail.ru; ORCID: https://orcid.org/0000-0003-0967-7192)
Голенков Андрей Васильевич
доктор медицинских наук, профессор кафедры психиатрии, медицинской психологии и неврологии, Чувашский государственный университет, Россия, Чебоксары (golenkovav@inbox.ru; ORCID: https://orcid.org/0000-0002-3799-0736)
Шептухина Алена Игоревна
студентка VI курса медицинского факультета, Чувашский государственный университет, Россия, Чебоксары (priffetik@bk.ru; )
Николаева Оксана Владиславовна
клинический ординатор кафедры психиатрии, медицинской психологии и неврологии, Чувашский государственный университет, Россия, Чебоксары (lovely667@mail.ru; )

Ссылка на статью

Козлов В.А., Сапожников С.П., Голенков А.В., Шептухина А.И., Николаева О.В. Амилоид – это плохо? Амилоид с точки зрения супрамолекулярной химии [Электронный ресурс] // Acta medica Eurasica. – 2016. – №1. – С. 50-60. – URL: https://acta-medica-eurasica.ru/single/2016/1/7/.