Single article

DOI: 10.47026/2413-4864-2023-2-139-150

Stepanov V.G., Aleksandrov Yu.K., Timofeeva L.A.

Osteocalcifications of thyroid nodules

Keywords: ultrasound examination, nodular goiter, thyroid cancer, calcification

According to the world statistics, when performing thyroid ultrasound, calcifications are detected in 20-33% of nodules of various structures. In recent years, there has been a sharp increase in the number of publications devoted to the assessment of this phenomenon, which is the basis for their study and development of their own approach. The aim is to generalize and systematize the materials available in available scientific Russian and foreign publications on the features of the structure and distribution of calcifications in nodular thyroid formations and on the opportunities of ultrasound examination in their detection and identification from the position of oncological risk. Materials and methods. To achieve the aim, methods of comparison, generalization, analysis, synthesis, grouping of classifications and systematization of data contained in publications of domestic and foreign authors were used. Results. Thyroid calcifications were previously rarely detected at the stage of preoperative examination of patients. With the widespread introduction of ultrasound into practice, such "findings" have become frequent. Despite a large number of patients with thyroid calcifications, attempts have not been made to seriously analyze and systematize this ultrasound sign, although some scientists consider them predictors of thyroid cancer. Attempts to seriously study the composition of calcifications in various nodules of the thyroid gland are occasional; they have not yielded practical results yet. Separation of calcium-containing deposits in thyroid nodules into microcalcifications and macrocalcifications significantly increased the diagnostic weight of the first group, which caused the predominant place of the sign "microcalcifications" in papillary thyroid cancer. There is no consensus on macrocalcifications. Various variants of their structure and the duration of their formation do not yet allow them to be adequately systematized from the perspective of predicting the diagnosis. Conclusions. According to the majority of the authors of the sources studied, calcium-containing deposits in the nodules of the thyroid gland indicate a severe irreversible restructuring of tissues with loss of their ability to regulate mineral metabolism. With the help of ultrasound, it is possible to not only get a descriptive presentation of calcifications, but to track their change over time as well.

References

  1. Shulutko A.M., Semikov V.I., Patalova A.R. et al. Vozmozhnosti ul’trazvukovogo metoda issledovaniya v rannei diagnostike raka shhitovidnoi zhelezy [Possibilities of Ultrasound Method of Research in Early Diagnostics of Thyroid Carcinoma]. Vestnik hirurgii imeni I.I. Grekova, 2017, vol. 176, no. 2, pp. 38–44.
  2. Fisenko E.P., Sich Yu.P., ZabolotskaYa N.V. et al. Klassifikatsiya TI-RADS v otsenke stepeni zlokachestvennosti uzlov shchitovidnoi zhelezy. Metodicheskoe posobie dlya vrachei ul’trazvukovoi diagnostiki [Classification of TI-RADS in assessing the degree of malignancy of thyroid nodules. Methodical manual for doctors of ultrasound diagnostics]. Moscow, 2020, 56 p.
  3. Levinski A., Adamchevski Z. Uzlovoi zob, podozritel’nyi na zlokachestvennost’ [Nodular goiter, suspicious of malignancy]. Thyroid International, 2013, no. 1, pp. 1–18.
  4. Danil’chenko S.N., Stanislavov A.S., Kuznecov V.N. et al. Struktura i morfologiya nanokristallicheskikh kal’tsifikatov shchitovidnoi zhelezy [Structure and Morphology of Nanocrystalline Calcifications in Thyroid]. Zhurnal nano-ta elektronnoi fiziki, 2016, vol. 8, no. 1, 01031(6pp).
  5. Timofeeva L.A., Shubin L.B. Ekspertnaya otsenka stratifikatsionnoi sistemy diagnostiki uzlovoi patologii shchitovidnoi [Expert Evaluation of Stratification System for Nodular Thyroid Pathology Diagnostics]. Rossiiskii elektronnyi zhurnal luchevoi diagnostiki, 2019, vol. 9, no. 1, pp. 48–56. DOI: 10.21569/222274152019914856.
  6. Kharchenko V.P., Kotlyarov P.M., Mogutov M.S. et al. Ul’trazvukovaya diagnostika zabolevanii shchitovidnoi zhelezy [Ultrasound diagnosis of thyroid diseases]. Moscow, Vidar-M Publ., 2007, 232 p.
  7. Bai Y., Zhou G., Nakamura M. et al. Survival impact of psammoma body, stromal calcification, and bone formation in papillary thyroid carcinoma. Mod Pathol., 2009, vol. 22(7), pp. 887–894. DOI: 10.1038/modpathol.2009.38. Epub 2009 Mar 20. PMID: 19305382.
  8. Bilici S., Yigit O., Onur F. et al. Histopathological investigation of intranodular echogenic foci detected by thyroid ultrasonography. Am J Otolaryngol., 2017, vol. 38, pp. 608–613.
  9. Chen G., Zhu X.Q., Zou X. et al. Retrospective analysis of thyroid nodules by clinical and pathological characteristics, and ultrasonographically detected calcification correlated to thyroid carcinoma in South China. Eur Surg Res., 2009, vol. 42(3), pp. 137–142. DOI: 10.1159/000196506.
  10. Clinical Application of the 2021 Korean Thyroid Imaging Reporting and Data System (K-TIRADS)]. J Korean Soc Radiol., 2023, vol. 84(1), pp. 92–109. DOI: 10.3348/jksr.2022.0158.
  11. De Santis S., Sotgiu G., Crescenzi A. et al. On the chemical composition of psammoma bodies microcalcifications in thyroid cancer tissues. J Pharm Biomed Anal., 2020, vol. 190, 113534. DOI: 10.1016/j.jpba.2020.113534. Epub 2020 Aug 13. PMID: 32841781.
  12. Frates M.C., Benson C.B., Doubilet P.M. et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab., 2006, vol. 91(9), pp. 3411–3417. DOI: 10.1210/jc.2006-0690. Epub 2006 Jul 11. PMID: 16835280.
  13. Gao Z., Lu Q., Yan J. Value of differential diagnosis of contrast-enhanced ultrasound in benign and malignant thyroid nodules with microcalcification. Oncol Lett., 2019, vol. 17(5), pp. 4545–4549.
  14. Ginat D.T., Butani D., Giampoli E.J. et al. Pearls and pitfalls of thyroid nodule so nography and fine-needle aspiration. Ultrasound Q, 2010, vol. 26, pp. 171–178.
  15. Grant E.G., Tessler F.N., Hoang J.K. et al. Thyroid ultrasound reporting Lexicon: white paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee. J Am Coll Radiol., 2015, vol. 12, pp. 1272–1279.
  16. Guerlain J., Perie S., Lefevre M. et al. Localization and characterization of thyroid microcalcifications: A histopathological study. PLoS One, 2019, vol. 14(10), e0224138. DOI: 10.1371/journal.pone.0224138.
  17. Gürsoy A., Erdoğan M.F. Ultrasonographic Approach to Thyroid Nodules: State of Art. Thyroid International, 2012, no. 3, pp. 3–14.
  18. Ha E.J., Baek J.H., Lee J.H. et al. Core needle biopsy can minimise the non-diagnostic results and need for diagnostic surgery in patients with calcified thyroid nodules. Eur Radiol., 2014, vol. 24(6), pp. 1403–1409. DOI: 10.1007/s00330-014-3123-z.
  19. Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid., 2016, vol. 26(1), pp. 1–133. DOI: 10.1089/thy.2015.0020.
  20. Horvath E., Majlis S., et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. Clin. Endocrinol. Metab., 2009, vol. 94(5), pp. 1748–1751.
  21. Khoo M.C., Asa S.L., Witterick I.J., Freeman J.L. Thyroid calcification and its association with thyroid carcinoma. HEAD and NECK, 2002, vol. 24, I.7, pp. 651–655.
  22. Kim B.K., Choi Y.S., Kwon H.J. et al. Relationship between patterns of calcification in thyroid nodules and histopathologic findings. Endocr J., 2013, vol. 60(2), pp. 155–160. DOI: 10.1507/endocrj.ej12-0294.
  23. Kim B.K., Lee E.M., Kim J.H. et al. Relationship between ultrasonographic and pathologic calcification patterns in papillary thyroid cancer. Medicine (Baltimore),2018, vol. 97(41), DOI: 10.1097/MD.0000000000012675.
  24. Kim B.M., Kim M.J., Kim E.K. et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med. 2008;27:1425–1430.
  25. Kobaly K., Kim C.S., Langer J.E., Mandel S.J. Macrocalcifications Do Not Alter Malignancy Risk Within the American Thyroid Association Sonographic Pattern System When Present in Non-High Suspicion Thyroid Nodules. Thyroid., 2021, vol. 31(10), pp. 1542–1548. DOI: 10.1089/thy.2021.0140. Epub 2021 Sep 9. PMID: 34314256.
  26. Kobayashi K., Fujimoto T., Ota H. et al. Calcifications in thyroid tumors on ultrasonography: calcification types and relationship with histopathological type. Ultrasound Int Open., 2018, vol. 4(2), pp. e45–e51. DOI: 10.1055/a-0591-6070.
  27. Kuo T.-Ch., Wu M.-H., Chen K.-Y. et al. Ultrasonographic features for differentiating follicular thyroid carcinoma and follicular adenoma. Asian Journal of Surgery, 2020, vol. 43, iss. 1, pp. 339–346. DOI: https://doi.org/10.1016/j.asjsur.2019.04.016.
  28. Lee J., Lee S.Y., Cha S.H. et al. Fine-needle aspiration of thyroid nodules with macrocalcification. Thyroid., 2013, vol. 23(9), pp. 1106–1112. DOI: 10.1089/thy.2012.0406. Epub 2013 Aug 27. PMID: 23311668.
  29. Li Y., He H., Li W. et al. Efficacy and safety of radiofrequency ablation for calcified benign thyroid nodules: results of over 5 years’ follow-up. BMC Med Imaging, 2022, vol. 22(1), p. 75. DOI: 10.1186/s12880-022-00795-5. PMID: 35459125; PMCID: PMC9027040.
  30. Lu Z., Mu Y., Zhu H. et al. Clinical value of using ultrasound to assess calcification patterns in thyroid nodules. World J Surg., 2011, vol. 35(1), pp. 122–127. DOI: 10.1007/s00268-010-0827-3.
  31. Malhi H., Beland M.D., Cen S.Y. et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol., 2014, vol. 203, pp. 1310–1316.
  32. Mandel S.J., Langer J.E. Ultrasound of Nodular Thyroid Enlargement. In: Baskin H.J., Duick D.S., Levine R.A., eds. Thyroid Ultrasound and Ultrasound-Guided FNA. Springer, New York, 2013. DOI: https://doi.org/10.1007/978-1-4614-4785-6_7.
  33. Mathonnet M., Dessombz A., Bazin D. et al. Chemical diversity of calcifications in thyroid and hypothetical link to disease. Comptes Rendus Chimie, 2016, vol. 19, PP. 1672–1678.
  34. Middleton W.D., Teefey S.A., Reading C.C. et al. Comparison of performance characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association guidelines. AJR Am J Roentgenol., 2018, vol. 210, pp. 1148–1154.
  35. Na D.G., Kim D.S., Kim S.J. et al. Thyroid nodules with isolated macrocalcification: malignancy risk and diagnostic efficacy of fine-needle aspiration and core needle biopsy. Ultrasonography, 2016, vol. 35, pp. 212–219.
  36. Paik W., Na D.G., Gwon H.Y., Kim J. CT features of thyroid nodules with isolated macrocalcifications detected by ultrasonography. Ultrasonography, 2020, vol. 39(2), pp. 130–136. DOI: 10.14366/usg.19045. Epub 2019 Oct 23. PMID: 31962383; PMCID: PMC7065983.
  37. Reading C.C., Charboneau J.W., Hay I.D., Sebo T.J. Sonography of thyroid nodules: a “classic pattern” diagnostic approach. Ultrasound Q, 2005, vol. 21(3), pp. 157–165. DOI: 10.1097/01.ruq.0000174750.27010.68. PMID: 16096611.
  38. Reid J.D., Choi C.H., Oldroyd N.O. Calcium oxalate crystals in the thyroid. Their identification, prevalence, origin, and possible significance. Am J Clin Pathol., 1987, vol. 87(4), pp. 443–454. DOI: 10.1093/ajcp/87.4.443. PMID: 2435146.
  39. Richter M.N., McCarty K.S. Anisotropic crystals in the human thyroid gland. Am J Pathol. 1954 May-Jun;30(3):545-53. PMID: 13158527; PMCID: PMC1942528.
  40. Russ G., Bonnema S.J., Erdogan M.F. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J., 2017, vol. 6(5), pp. 225–237. DOI: 10.1159/000478927. Epub 2017 Aug 8. PMID: 29167761; PMCID: PMC5652895.
  41. Russ G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography, 2016, vol. 35(1), pp. 25–38. DOI: 10.14366/usg.15027.
  42. Shin H.S., Na D.G., Paik W. et al. Malignancy Risk Stratification of Thyroid Nodules with Macrocalcification and Rim Calcification Based on Ultrasound Patterns. Korean J Radiol., 2021, vol. 22(4), pp. 663–671. DOI: 10.3348/kjr.2020.0381. Epub 2021 Feb 2. PMID: 33660454; PMCID: PMC8005340.
  43. Tahvildari A.M., Pan L., Kong C.S., Desser T. Sonographic-pathologic correlation for punctate echogenic reflectors in papillary thyroid carcinoma: what are they? J Ultrasound Med., 2016, vol. 35, pp. 1645–1652.
  44. Takashima S., Fukuda H., Nomura N. et al. Thyroid nodules: re-evaluation with ultrasound. J Clin Ultrasound., 1995, vol. 23(3), pp. 179–184. DOI: 10.1002/jcu.1870230306. PMID: 7730464.
  45. Taki S., Terahata S., Yamashita R. et al. Thyroid calcifications: sonographic patterns and incidence of cancer. Clin Imaging., 2004, vol. 28, pp. 368–3
  46. Tessler F.N., Middleton W.D., Grant E.G. et al. ACR Thyroid Imaging, Reporting and Data System (TIRADS): white paper of the ACR TI-RADS Committee. J Am Coll Radiol., 2017, vol. 14, pp. 587–595.
  47. Timofeeva L.A., Sencha E.A., Aleksandrov Yu.K. et al. TIRADS Classification as a Malignancy Risk Stratification System. In: Thyroid Ultrasound. From Simple to Complex. Cham, Springer Verlag, 2019, pp. 131–145.
  48. Wienke J.R., Chong W.K., Fielding J.R. et al. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med., 2003, vol. 22(10), pp. 1027–1031. DOI: 10.7863/jum.2003.22.10.1027.
  49. Wu H., Zhang B., Li J. et al. Echogenic foci with comet-tail artifact in resected thyroid nodules: Not an absolute predictor of benign disease. PloS One, 2018, vol. 13, e0191505. DOI: 10.1371/journal.pone.0191505.
  50. Yang J., Sun Y., Li X. et al. Diagnostic performance of six ultrasound-based risk stratification systems in thyroid follicular neoplasm: A retrospective multi-center study. Front Oncol., 2022, vol. 20, p. 12, 1013410. DOI: 10.3389/fonc.2022.1013410. PMID: 36338713; PMCID: PMC9632336.
  51. Yoon S.J., Na D.G., Gwon H.Y. et al. Similarities and differences between Thyroid Imaging Reporting and Data Systems. AJR Am J Roentgenol., 2019, vol. 213, W76–W84.
  52. Zheng Yi, Xu Shangyan, Zheng Zhan et al. Ultrasonic Classification of Multicategory Thyroid Nodules Based on Logistic Regression. Ultrasound Quarterly, 2020, vol. 36(2), pp. 146–157. DOI: 10.1097/RUQ.0000000000000453.
  53. Zhou J., Yin L., Wei X. et al. Superficial Organ and Vascular Ultrasound Group of the Society of Ultrasound in Medicine of the Chinese Medical Association; Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine,2020, vol. 70(2), pp. 256– DOI: 10.1007/s12020-020-02441-y. Epub 2020 Aug 21. PMID: 32827126.

About authors

Stepanov Vladimir G.
Minister, Ministry of Health of the Chuvash Republic, Russia, Cheboksary (medicin_prm@cap.ru; )
Aleksandrov Yuri K.
Doctor of Medical Sciences, Professor, Head of the Department of Surgical Diseases, Yaroslavl State Medical University, Russia, Yaroslavl (yka@mail.ru; ORCID: https://orcid.org/0000-0003-3887-5219)
Timofeeva Lyubov A.
Doctor of Medical Sciences, Professor, Department of Propedaedeutics of Internal Diseases with Radio Diagnosis Course, Chuvash State University, Russia, Cheboksary (adabai@mail.ru; ORCID: https://orcid.org/0000-0002-4707-8214)

Article link

Stepanov V.G., Aleksandrov Yu.K., Timofeeva L.A. Osteocalcifications of thyroid nodules [Electronic resource] // Acta medica Eurasica. – 2023. – №2. P. 139-150. – URL: https://acta-medica-eurasica.ru/en/single/2023/2/13/. DOI: 10.47026/2413-4864-2023-2-139-150.