Single article

DOI: 10.47026/2413-4864-2023-2-114-123

Bubnova N.V., Timofeeva N.Yu., Kostrova O.Yu., Struchko G.Yu., Kotelkina A.A., Samakina E.S.

The biological role of selenium (literature review)

Keywords: selenium, selenoproteins, antioxidant effect, antitumor effect

Micro- and macroelements play a significant role in the unimpaired functioning of all organs and systems. Important essential trace elements include selenium, which plays a crucial role in many physiological processes, including immune responses. The purpose is to generalize available data on the effect of selenium on the functioning of various organs and systems of the human body. Materials and methods. This literature review presents data on the effect of selenium on the body, published in domestic and foreign literature sources. Results. Selenium belongs to essential trace elements; it is a part of various proteins and enzymes that have cytoprotective, antitumor, antimutagenic effects. In addition, selenium participates in the functioning of the body's endocrine, reproductive, immune and antioxidant systems, although it was previously considered one of the most toxic trace elements. Many studies have been devoted to the analysis of selenium's effect on the processes of carcinogenesis and prevention of the development of tumor processes of various localization. Selenium-containing enzymes play one of the leading roles in anti-carcinogenic action, as they take part in the antioxidant defense of the body, regulate apoptosis and cell proliferation, protect desoxyribonucleic acid from damage, affect the metabolism and detoxification of carcinogens. Conclusions. The study of selenium's antitumor effect is of the greatest interest at present, since the number of patients with oncopathology is increasing every year.

References

  1. Bel’mer S.V. Nekotorye fiziologicheskie i klinicheskie aspekty defitsita mikroelementov tsinka i selena u detei [Some physiological and clinical aspects of zinc and selenium micronutrient deficiency in children]. Voprosy detskoi dietologii, 2006, no. 5(4), pp. 22–24.
  2. Bespalov V.G., Panchenko A.V., Murazov Ya.G., Chepik O.F. Vliyanie selenita natriya na kantserogenez predstatel’noi zhelezy i drugikh organov, indutsirovannykh metilnitrozomochevinoi i testosteronom u krys [The effect of sodium selenite on the carcinogenesis of the prostate gland and other organs induced by methyl nitrosourea and testosterone in rats]. Voprosy onkologii, 2011, no. 4(57), pp. 486–492.
  3. Bolieva L.Z. Vliyanie kaskatola i selena na vozniknovenie i razvitie opukholei molochnoi zhelezy, indutsirovannykh u krys n-metil-n-nitrozomochevinoi [The effect of cascatol and selenium on the occurrence and development of breast tumors induced in rats by n-methyl-n-nitrosourea]. Patologicheskaya fiziologiya i eksperimental’naya terapiya, 2009, no. 2, pp. 31–36.
  4. Varlamova E.G., Mal’tseva V.N. Unikal’nost’ prirody mikroelementa selena i ego klyuchevye funktsii [The uniqueness of the nature of the trace element selenium and its key functions]. Biofizika, 2019, no. 4, pp. 646–660.
  5. Timofeeva N.Yu., Kostrova O.Yu., Struchko G.Yu. et al. Vliyanie selena na pokazateli perifericheskoi krovi krys [The effect of selenium on the peripheral blood parameters of rats]. In: Meditsinskaya nauka i praktika: mezhdistsiplinarnyi dialog: sb. st. Mezhdunar. nauch-prakt. konf., posvyashch. 55-letiyu Chuvash. gos. un-ta imeni I.N. Ul’yanova [Proc. of Russ. Sci. Conf. «Medical science and practice: interdisciplinary dialogue»]. Cheboksary, Chuvash State University Publ., 2022, pp. 70–73.
  6. Guseinov T.M., Yakh”yaeva F.R. Selen i starenie, rol’ selena v gerontologicheskikh protsessakh [Selenium and aging, the role of selenium in gerontological processes]. Biomeditsina, 2015, no. 4, pp. 3–7.
  7. Zhestyanikov A. L. Disbalans nekotorykh makro- i mikroelementov kak faktor riska zabolevanii serdechno-sosudistoi sistemy na severe [Imbalance of some macro- and microelements as a risk factor for diseases of the cardiovascular system in the North]. Ekologiya cheloveka, 2005, no. 9, pp. 19–25.
  8. Kudrin A.V., Skal’nyi A.V., Zhavoronkov A.A. et al.Immunofarmakologiya mikroelementov [Immunopharmacology of trace elements]. Moscow, KMK Publ., 2000, 537 p.
  9. Kanzhigalina Z.K., Kasenova R.K., Oradova A.Sh. Biologicheskaya rol’ i znachenie mikroelementov v zhiznedeyatel’nosti cheloveka [Biological role and importance of trace elements in human life]. Vestnik KazNMU, 2013, no. 5(2), pp. 88–91.
  10. Moskalev Yu.I. Mineral’nyi obmen [Mineral exchange]. Moscow, Meditsina Publ., 1985, 288 p.
  11. Moskvichev E.V., Merkulova L.M., Struchko G.Yu. Immunogistokhimicheskaya kharakteristika apoptoza i kletochnoi proliferatsii v timuse pri eksperimental’noi opukholi tolstoi kishki [Immunohistochemical characteristics of apoptosis and cell proliferation in the thymus in experimental colon tumor]. Immunologiya, 2012, no. 6(33), pp. 303–305.
  12. Obukhova O.A., Kurmukov I.A. Selen v onkologii [Selenium in oncology]. Onkoginekologiya, 2019, no. 1(29), pp. 66–72.
  13. Poluboyarinov P.A., Elistratov D.G., Shvets V.I. Metabolizm i mekhanizm toksichnosti selensoderzhashchikh preparatov, ispol’zuemykh dlya korrektsii defitsita mikroelementa selena [Metabolism and mechanism of toxicity of selenium-containing drugs used to correct the deficiency of the trace element selenium]. Tonkie khimicheskie tekhnologii, 2019, no. 1(14), pp. 5–24.
  14. Bubnova N.V., Kostrova O.Yu., Struchko G.Yu. et al Reaktsiya tuchnykh kletok timusa pri kantserogeneze na fone pit’evogo priema selena [Reaction of thymus mast cells during carcinogenesis against the background of drinking selenium]. In: Meditsinskaya nauka i praktika: mezhdistsiplinarnyi dialog: sb. st. Mezhdunar. nauch-prakt. konf., posvyashch. 55-letiyu Chu-vash. gos. un-ta imeni I.N. Ul’yanova. [Proc. of Russ. Sci. Conf. «Medical science and practice: interdisciplinary dialogue»]. Cheboksary, Chuvash State University Publ., 2022, pp. 217–220.
  15. Rusetskaya N.Yu., Borodulin V.B. Biologicheskaya aktivnost’ selenoorganicheskikh soedinenii pri intoksikatsii solyami tyazhelykh metallov [Biological activity of selenium-organic compounds during intoxication with heavy metal salts]. Biomeditsinskaya khimiya, 2015, no. 4(61), pp. 449–461.
  16. Troshina E.A., Senyushkina E.S., Terekhova M.A. Rol’ selena v patogeneze zabolevanii shchitovidnoi zhelezy [The role of selenium in the pathogenesis of thyroid diseases]. Klinicheskaya i eksperimental’naya tireoidologiya, 2018, no. 4(14), pp. 192–205.
  17. Shestakova T.P. Ispol’zovanie selena v meditsinskoi praktike [The use of selenium in medical practice]. Russkii meditsinskii zhurnal, 2017, no. 22(25), pp. 1654–1659.
  18. Andersen O., Nielsen J.B. Effect of simultaneous low level dietary supplementation with inorganic selenium in whole-body, blood and organ levels of toxic metals in mice. Health Perspect, 1994, vol. 102, pp. 321–324. DOI: 10.1289/ehp.94102s3321.
  19. Avery J.C, Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients, 2018, vol. 10(9), pp. 1203–1223. DOI:3390/nu10091203-1223.
  20. Barchielli G., Capperucci A., Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel), 2022, vol. 11(2), pp. 251-290. DOI: 3390/antiox11020251.
  21. Bjorklund G., Aaseth J., Pivina L.M. The role of selenium in cancer prevention. Science & Healthcare, 2018, vol. 20, pp. 16–22.
  22. Bjorklund G., Shanaida M., Lysiuk R. et al. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules, 2022, vol. 27(19), pp. 6613–6623. DOI: 10.3390/molecules27196613.
  23. Borella P., Bargellini A., Solfrini V. Selenium interaction with human immune cell functions. In: Collery Ph., Bratter P., Negretti de Bratter V. et al., eds. Metal Ions in Biology and Medicine. Paris, John Libbey Eurotext, 1998, no. 5, pp. 429–434.
  24. Burk R.F., Hill K.E. Regulation of selenoproteins. Rev. Nutr., 1993, vol. 13, pp. 65–81. DOI: 10.1146/annurev.nu.13.070193.000433.
  25. Combs G.F.Jr. Impact of selenium and cancerprevention findings on the nutrition-health paradigm. Cancer, 2001, vol. 40, pp. 6–11. DOI: 10.1207/S15327914NC401_4.
  26. Das K.C., Lewis-Molock Y., White C.W. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol., 1997, vol. 17(6), pp. 713–726. DOI: 1165/ajrcmb.17.6.2809.
  27. Davis C.D., Irons R. Are selenoproteins important for the cancer protective effects of selenium? Nutr. Food Sci, 2005, vol. 1, pp. 201–214. DOI: 10.2174/157340105774574857.
  28. Diwadkar-Navsariwala V., Diamond A.M. The link between selenium and chemoprevention: a case for selenoproteins. Nutr., 2004, vol. 134, pp. 2899–2902. DOI: 10.1093/jn/134.11.2899.
  29. Duntas L.H., Benvenga S. Selenium: an element for life. Endocrine, 2015, vol. 48(93), pp. 756–775. DOI: 10.1007/s12020-014-0477-6.
  30. El-Bayoumy K. The protective role of selenium on genetic damage and on cancer. Res., 2001, vol. 475, pp. 123–139. DOI: 10.1016/s0027-5107(01)00075-6.
  31. Ehudin M.A., Golla U., Trivedi D. et al. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci., 2022, vol. 23(14), pp. 7972–8000. DOI: 10.3390/ijms23147972.
  32. Fairweather-Tait S.J., Bao Y., Broadley M.R. et al. Selenium in human health and disease. Antioxid Redox Signal, 2011, vol. 14(7), pp. 1337–1383. DOI: 10.1089/ars.2010.3275.
  33. Gius D., Botero A., Shan S., Curry H.A. Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Lett., 1999, vol. 106, pp. 93–106. DOI: 10.1016/s0378-4274(99)00024-7.
  34. Gupta M., Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front Plant Sci., 2017, vol. 11(7), pp. 2074–2086. DOI: 10.3389/fpls.2016.02074.
  35. Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol., 2005, vol. 18(4), pp. 309–318. DOI: 10.1016/j.jtemb.2005.02.009.
  36. Hatfield D.L., Berry M.J., Gladyshev V.N. Selenium: its molecular biology and role in human health. New York Springer, 2006, 419 p.
  37. Hori E., Yoshida S., Fuchigami T. et al. Cardiac myoglobin participates in the metabolic pathway of selenium in rats. Metallomics, 2018, vol. 10(4), pp. 614–622. DOI: 10.1039/c8mt00011e.
  38. Huang J., Xie L., Song A., Zhang C. Selenium Status and Its Antioxidant Role in Metabolic Diseases. Oxid Med Cell Longev., 2022, vol. 2022, pp. 7009863–7009878. DOI: 10.1155/2022/7009863.
  39. Janghorbani M., Martin R.F., Kasper L.J. et al. The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status. Am J Clin Nutr., 1990, vol. 51(4), pp. 670–677. DOI: 10.1093/ajcn/51.4.670.
  40. Jia Y., Dai J., Zeng Z. Potential relationship between the selenoproteome and cancer. Mol Clin Oncol., 2020, vol. 13(6), pp. 83–94. DOI: 10.3892/mco.2020.2153.
  41. Kieliszek M., Bano I. Selenium as an important factor in various disease states – a review. EXCLI J., 2022, vol. 5(21), pp. 948–966. DOI: 10.17179/excli2022-5137.
  42. Leiter O., Zhuo Z., Rust R. et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab., 2022, vol. 34(3), pp. 408–423. DOI:1016/j.cmet.2022.01.005.
  43. Lin Y., He F., Lian S. et al. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients, 2022, vol. 14(5), pp. 952–970. DOI:3390/nu14050952.
  44. Ma C., Hoffmann P.R. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin Cell Dev Biol., 2021, vol. 115, pp. 54–61. DOI: 10.1016/j.semcdb.2020.11.006.
  45. MacFarquhar J.K., Broussard D.L., Melstrom P. et al. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med., 2010, vol. 170(3), pp. 256–261. DOI: 10.1001/archinternmed.2009.495.
  46. Ma J., Huang J., Sun J. et al. L-Se-methylselenocysteine sensitizes lung carcinoma to chemotherapy. Cell Prolif., 2021, vol. 54(5), pp. 13038–13046. DOI: 10.1111/cpr.13038.
  47. Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, vol. 18(3), pp. 3292–3311. DOI: 10.3390/molecules18033292.
  48. Minich W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry (Mosc), 2022, vol. 87(Suppl 1), pp. S168–S102. DOI: 10.1134/S0006297922140139.
  49. Morán-Serradilla C., Angulo-Elizari E., Henriquez-Figuereo A. et al. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites, 2022, vol. 12(9), pp. 874–892. DOI: 10.3390/metabo12090874.
  50. Nessel T.A., Gupta V. Selenium. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Available at: https://pubmed.ncbi.nlm.nih.gov/32491483.
  51. Wada O. What are Trace Elements? Their deficiency and excess states. of the Japan Medical Association, 2003, vol. 129(5), pp. 607–612.
  52. Park K., Rimm E., Siscovick D. et al. Demographic and lifestyle factors and selenium levels in men and women in the U.S. Nutr Res Pract., 2011, vol. 5(4), pp. 357–64. DOI: 10.4162/nrp.2011.5.4.357.
  53. Peters K.M., Carlson B.A., Gladyshev V.N., Tsuji P.A. Selenoproteins in colon cancer. Free Radic Biol Med., 2018, vol. 127, pp. 14–25. DOI: 10.1016/j.freeradbiomed.2018.05.075.
  54. Rataan A.O., Geary S.M., Zakharia Y. et al. Potential Role of Selenium in the Treatment of Cancer and Viral Infections. Int J Mol Sci., 2022, vol. 23(4), pp. 2215–2218. DOI: 10.3390/ijms23042215.
  55. Rayman M.P. Selenium intake, status, and health: a complex relationship. Hormones (Athens), 2020, vol. 19(1), pp. 9–14. DOI: 10.1007/s42000-019-00125-5.
  56. Schrauzer G.N. Anticarcinogenic effects of selenium. Cell Mol Life Sci., 2000, vol. 57(13-14), pp. 1864–1873. DOI: 10.1007/PL00000668.
  57. Selamoglu Z. Selenium compounds for fish health: An update. Survey in Fisheries Sci., 2018, vol. 4(2), pp. 1–4. DOI: 10.18331/SFS2018.4.2.1.
  58. Seo Y.R, Kelley M.R., Smith M.L. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci USA, 2002, vol. 99(22), pp. 14548-53. DOI: 10.1073/pnas.212319799.
  59. Shreenath A.P., Ameer M.A., Dooley J. Selenium Deficiency. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK482260.
  60. Sors T.G., Ellis D.R., Na G.N. Et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J., 2005, vol. 42(6), pp. 785-97. DOI: 10.1111/j.1365-313X.2005.02413.x.
  61. Sun Q.A., Wu Y., Zappacosta F. et al. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem., 1999, vol. 274(35), pp. 24522-24530. DOI: 10.1074/jbc.274.35.24522.
  62. Tian J., Wei X., Zhang W., Xu A. Effects of Selenium Nanoparticles Combined with Radiotherapy on Lung Cancer Cells. Front Bioeng Biotechnol., 2020, vol. 8, pp. 598997. DOI: 10.3389/fbioe.2020.598997.
  63. Tsuji P.A., Santesmasses D., Lee B.J. et al. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci., 2021, vol. 23(1), pp. 5–25. DOI: 10.3390/ijms23010005.
  64. Wang H., Hsia S., Wu T.H., Wu C.J. Fish Oil, Se Yeast, and Micronutrient-Enriched Nutrition as Adjuvant Treatment during Target Therapy in a Murine Model of Lung Cancer. Mar Drugs, 2021, vol. 19(5), pp. 262–275. DOI: 10.3390/md19050262.
  65. Winkel L.H., Johnson C.A., Lenz M. et al. Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol., 2012, vol. 46(2), pp. 571–580. DOI: 10.1021/es203434d.
  66. Wu W., Li D., Feng X. et al. A pan-cancer study of selenoprotein genes as promising targets for cancer therapy. BMC Med Genomics, 2021, vol. 14(1), pp. 78–92. DOI:10.1186/s12920-021-00930-1.
  67. Zhao M., Hou Y., Fu X. et al. Selenocystine inhibits JEG-3 cell growth in vitro and in vivo by triggering oxidative damage-mediated S-phase arrest and apoptosis. Cancer Res Ther., 2018, vol. 14(7), pp. 1540–1548. DOI: 10.4103/jcrt.JCRT_864_17.

About authors

Bubnova Natalia V.
Senior Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (natalia210485@yandex.ru; ORCID: https://orcid.org/0000-0002-2505-0827)
Timofeeva Natalya Yu.
Senior Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (bla11blabla@yandex.ru; ORCID: https://orcid.org/0000-0002-7596-0132)
Kostrova Olga Yu.
Candidate of Medical Sciences, Assistant Professor, Head of Department of the Instrumental Diagnostics with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (evkbiz@yandex.ru; ORCID: https://orcid.org/0000-0002-7057-9834)
Struchko Gleb Yu.
Doctor of Medical Sciences, Professor, Head of Normal and Topographic Anatomy Department, Chuvash State University, Russia, Cheboksary (glebstr@mail.ru; ORCID: https://orcid.org/0000-0002-0549-5116)
Kotelkina Anastasiia A.
Candidate of Medical Sciences, Assistant Professor, Department of Normal and Topographic Anatomy Department, Chuvash State University, Russia, Cheboksary (ds6426@chebnet.com; ORCID: https://orcid.org/0000-0001-5366-5135)
Samakina Ekaterina S.
Assistant Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (ekaterina1996.96@mail.ru; ORCID: https://orcid.org/0000-0002-9515-0639)

Article link

Bubnova N.V., Timofeeva N.Yu., Kostrova O.Yu., Struchko G.Yu., Kotelkina A.A., Samakina E.S. The biological role of selenium (literature review) [Electronic resource] // Acta medica Eurasica. – 2023. – №2. P. 114-123. – URL: https://acta-medica-eurasica.ru/en/single/2023/2/11/. DOI: 10.47026/2413-4864-2023-2-114-123.