Single article

DOI: 10.47026/2413-4864-2023-1-139-146

Tasakova O.S., Golubtsova N.N., Gunin A.G.

Biological Role of Thioredoxin-Mediated Intracellular Signaling During Physiological Aging (Literature Review)

Keywords: thioredoxin, thioredoxin-reductase, thioredoxin-binding protein, skin, aging

Thioredoxin is a low molecular weight protein found in all organisms. It is associated with the regulation of numerous cellular processes such as gene expression, antioxidant response, apoptosis, and proliferation. In humans, thioredoxin is represented by two functionally different forms, Trx1 and Trx2. The review contains the results of studies on the biological role of thioredoxin, with special attention paid to its role in the regulation of the physiological aging process. The aim of the study was to study the available literature sources that publish materials on the biological role of thioredoxin, paying special attention to its significance in the regulation of the physiological aging process. Materials and methods. To achieve the goal of the study, methods of analysis, generalization, comparison and systematization of these publications of domestic and foreign authors were used. Results. The main function of the thioredoxin-dependent system is antioxidant activity. Trx and glutathione (GSH) play a central role in counteracting oxidative stress. In addition to its antioxidant properties, Trx, unlike other antioxidant enzymes, plays an important role in maintaining the redox state of cells and in regulating redox signaling. There is a lot of evidence in the literature that shows the stimulating effect of thioredoxin on tissue proliferation. The Trx system is hypothesized to promote the development and spread of cancer through various mechanisms, including inhibition of apoptosis, promotion of cell growth, and maintenance of angiogenesis. There is also evidence of an important role of the thioredoxin system in aging. Conclusions. Thus, there are data on the participation of the thioredoxin system in the processes of aging, carcinogenesis, regulation of proliferation, and apoptosis. However, the role of thioredoxin in age-related changes in organs has not been studied enough, so additional studies are needed.

References

  1. Gunin A.G., Golubtsova N.N., Emel’yanov V.Yu. et al. Tioredoksin v fibroblastakh dermy cheloveka v protsesse stareniya [Thioredoxin in Fibroblasts of Human Dermis in the Process of Aging]. Uspekhi gerontologii, 2022, no. 3, pp. 341–350.
  2. Bradshaw P.C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. , 2019, vol. 11, no. 3, p. 504. DOI: 10.3390/nu11030504.
  3. Dodson M., Castro-Portuguez R., Zhang D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, vol. 23, p. 101107. DOI: 10.1016/j.redox.2019.101107.
  4. Hasan, A., Kalinina E., Tatarskiy V., Shtil A. Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines, 2022, vol. 10, no. 7, p. 1757. DOI: 10.3390/biomedicines10071757.
  5. Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative Stress in Cancer. Cancer Cell, 2020, vol. 38, no. 2, pp. 167–197. DOI: 10.1016/j.ccell.2020.06.001.
  6. Ikeno Y. Thioredoxin-a magic bullet or a double-edged sword for mammalian aging? Aging Pathobiol. Ther., 2021; vol. 3, no. 2, pp.17–19. DOI: 10.31491/APT.2021.06.056.
  7. Jastrząb A., Skrzydlewska E. Thioredoxin-dependent system. Application of inhibitors. J Enzyme Inhib Med Chem., 2021, vol. 36, no.1, pp. 362–371. DOI: 10.1080/14756366.2020.1867121.
  8. Jia J.J., Geng W.S., Wang Z.Q., Chen L., Zeng X.S. The role of thioredoxin system in cancer: Strategy for cancer therapy. Cancer Chemother. Pharmacol., 2019, vol. 84, pp. 453–470. DOI: 10.1007/s00280-019-03869-4.
  9. Jiang N., Liu J., Guan C., Ma C., An J., Tang X. Thioredoxin-interacting protein: A new therapeutic target in bone metabolism disorders? Front Immunol. 2022, vol. 13, 955128. DOI: 10.3389/fimmu.2022.955128.
  10. Kalın Ş.N., Altay A., Budak H. Diffractaic acid, a novel TrxR1 inhibitor, induces cytotoxicity, apoptosis, and antimigration in human breast cancer cells. Chem Biol Interact., 2022, vol. 361, 109984. DOI: 10.1016/j.cbi.2022.109984.
  11. Karlenius T.C., Tonissen K.F. Thioredoxin and cancer: a role for thioredoxin in all states of tumor oxygenation. Cancers, 2010, vol. 2, no. 2, pp. 209–232. DOI: 10.3390/cancers2020209.
  12. Lisa C. Flores, Madeline G.R., Geneva M.C. et al. Continuous overexpression of thioredoxin 1 enhances cancer development and does not extend maximum lifespan in male C57BL/6. Pathobiology of Aging & Age-related Diseases, 2018, vol. 8, no. 1, 1533754. DOI: 10.1080/20010001.2018.1533754.
  13. Liu R.X., Tang W., Zheng B.Y. et al. YAP/miR-524-5p axis negatively regulates TXNIP expression to promote chondrosarcoma cell growth. Biophys. Res. Commun., 2022, vol. 590, pp. 20–26. DOI:10.1016/j.bbrc.2021.12.052.
  14. Lu T., Zong M., Fan S., Lu Y., Yu S., Fan L. Thioredoxin 1 is associated with the proliferation and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes. Clin Rheumatol., 2018, vol. 37, no. 1, pp. 117–125. DOI: 10.1007/s10067-017-3832-1.
  15. Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med., 2014, vol. 66, pp. 75–87. DOI: 10.1016/j.freeradbiomed.2013.07.036.
  16. Masutani H., Hirota K., Sasada T. et al. Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLV-I Tax. Lett., 1996, vol. 54, pp. 67–71. DOI: 10.1016/s0165-2478(96)02651-x.
  17. Matsui M., Oshima M., Oshima H. et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol., 1996, vol. 178, no. 1, pp. 179–185. DOI: 10.1006/dbio.1996.0208.
  18. Matthews J.R., Wakasugi N., Virelizier J.L., Yodoi J., Hay R.T. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res., 1992, vol. 20, no. 15, pp. 3821–3830. DOI: 10.1093/nar/20.15.3821.
  19. Mitchell D.A., Morton S.U., Fernhoff N.B., Marletta M.A. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Natl. Acad. Sci., 2007, vol. 104, pp. 11609–11614. DOI: 10.1073/pnas.0704898104.
  20. Nadeau P.J., Charette S.J., Toledano M.B., Landry J. Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis. Mol. Biol. Cell, 2007, vol.18, pp. 3903–3913. DOI: 10.1091/mbc.e07-05-0491.
  21. Ningfei A.N., Kang Y. Thioredoxin and hematologic malignancies. Cancer Res., 2014, vol. 122, pp. 245–279. DOI: 10.1016/B978-0-12-420117-0.00007-4.
  22. Nonn L., Williams R.R., Erickson R.P., et al. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and embryonic lethality in homozygous mice. Mol Cell Biol., 2003, vol. 23, no. 3, pp. 916–922. DOI: 10.1128/MCB.23.3.916-922.2003.
  23. Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biophys. Acta, 2016, vol. 1863, pp. 2977 2992. DOI: 10.1016/j.bbamcr.2016.09.012.
  24. Ren X., Zou L., Zhang X., Branco V., Wang J., Carvalho C., Holmgren A., Lu J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid Redox Signal., 2017, vol. 27, no. 13, pp. 989–1010. DOI: 10.1089/ars.2016.6925.
  25. Rossler O.G, Thiel G. Specificity of stress-responsive transcription factors Nrf2, ATF4, and AP-1. Cell. Biochem., 2017, vol. 118, no. 1, pp. 127–140. DOI: 10.1002/jcb.25619.
  26. Sakurai K., Teruki Dainichi T., Matsumoto R. et al. Topical thioredoxin inhibits IL-6 and IL-1beta production from keratinocytes and is effective for psoriasis-like dermatitis in mice. Journal of Dermatological Science, 2016, vol. 84, e15. DOI: 10.1016/j.jdermsci.2016.08.053.
  27. Yodoi J., Matsuo Y., Tian H., Masutani H., Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients, 2017, vol. 9, no. 10. DOI: 10.3390/nu9101081.
  28. Zhang J., Li X., Han X., Liu R., Fang J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol. Sci., 2017, vol. 38, no. 9, pp. 79–-808. DOI: 10.1016/j.tips.2017.06.001.
  29. Zhang X., Selvaraju K., Saei A.A. et al. Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug. Biochimie, 2019, vol. 162, pp. 46–54. DOI: 10.1016/j.biochi.2019.03.015.

About authors

Tasakova Olga S.
1st year Resident in the Specialty 31.08.49 «Therapy», Chuvash State University, Russia, Cheboksary (olya.tasakova@mail.ru; ORCID: https://orcid.org/0000-0003-2089-2205)
Golubtsova Natalya N.
Doctor of Biological Sciences, Associate Professor, Head of the Department of General and Clinical Morphology and Forensic Medicine, Chuvash State University, Russia, Cheboksary (golubnata@list.ru; ORCID: https://orcid.org/0000-0002-5436-1333)
Gunin Andrei G.
Doctor of Medical Sciences, Professor, Department of Obstetrics and Gynecology named by G.M. Vorontzova, Chuvash State University, Russia, Cheboksary (drgunin@mail.ru; ORCID: https://orcid.org/0000-0003-1519-2319)

Article link

Tasakova O.S., Golubtsova N.N., Gunin A.G. Biological Role of Thioredoxin-Mediated Intracellular Signaling During Physiological Aging (Literature Review) [Electronic resource] // Acta medica Eurasica. – 2023. – №1. P. 139-146. – URL: https://acta-medica-eurasica.ru/en/single/2023/1/16/. DOI: 10.47026/2413-4864-2023-1-139-146.