Single article

DOI: 10.47026/2413-4864-2022-4-108-120

Grigoreva E.A., Gordova V.S., Sergeeva V.E.

The Effect of Silicon Nanoparticles and Water-Soluble Silicates on the Liver (comparison of our own research results with the literature data)

Keywords: silicon, amorphous silicon dioxide, silica, silicates, silicoses, liver, drinking water

This literature review combines data on the effect of silicon compounds on the body – silicon nanoparticles and water-soluble silicates, obtained by domestic and foreign researchers over the past decade. a widespread use of amorphous silicon dioxide in modern industry, as well as revision of regulatory documents on silicon content in drinking water in the Russian Federation give this aspect special relevance. Increased attention is paid to comparing our own results of long-term experiments on silicon intake with drinking water by laboratory animals and the literature data. It has been shown that morphological changes in the liver caused by exposure to water-soluble silicates and nanoparticles are similar. Thus, questions about the biological inertness of silicon, monitoring the use of silicon in industry, and adjustment of its maximum permissible concentration in drinking water require further study.

References

  1. Aksel’rov M.A., Alimova M.M., Baradulin A.A., Boechko D.I. et al. COVID-19: pervyi opyt. 2020 [COVID-19: first experience. 2020]. Tyumen, 2021, 463 p.
  2. Zaiceva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A. et al. Vliyanie nanochastits dioksida kremniya na morfologiyu vnutrennikh organov u krys pri peroral’nom vvedenii [Influence of silicon dioxide nanoparticles on the morphology of internal organs in rats after oral administration]. Analiz riska zdorov’yu, 2016, no. 4, pp. 80–94. DOI: 10.21668/health.risk/2016.4.10.
  3. Gordova V.S., Grigor’eva E.A., Sergeeva V.E., Smorodchenko A.T. Osobennosti reaktsii makrofagov pecheni na deistvie vodorastvorimogo soedineniya kremniya v eksperimente [Features of the reaction of liver macrophages to the action of a water-soluble silicon compound in the experiment]. Meditsinskaya immunologiya, 2017, vol. 19, pp. 23–24.
  4. Gordova V.S., Sapozhnikov S.P., Sergeeva V.E., Karyshev P.B. Osnovy biosilifikatsii [The basics of biosilicification]. Vestnik Chuvashskogo universiteta, 2013, no. 3, pp. 401–409.
  5. Gordova V.S., Sergeeva V.E., Sapozhnikov S.P. Morfologicheskaya adaptatsiya vnutrennikh organov k postupleniyu v organizm vodorastvorimogo soedineniya kremniya [Morphological adaptation of internal organs to intake of a water-soluble compound silicon]. Cheboksary, 2021, 208 p.
  6. Grigor’eva E.A., Gordova V.S., Sergeeva V.E. Reaktsiya immunokompetentnykh kletok pecheni na dlitel’noe vozdeistvie soedinenii kremniya [The response of immunocompetent liver cells to long-term exposure to silicon compounds]. In: Mediko-biologicheskie, klinicheskie i sotsial’nye voprosy zdorov’ya i patologii cheloveka: materialy IV Vserossiiskoi nauchnoi konferentsii studentov i molodykh uchenykh s mezhdunarodnym uchastiem XIV oblastnoi festival’ “Molodye uchenye – razvitiyu ivanovskoi oblasti” [Proc. of IV Russ. Sci. Conf. «Medico-biological, clinical and social issues of human health and pathology»]. Ivanovo, Ivanovo State Medical Academy Publ., 2018, pp. 6–7.
  7. Grigor’eva E.A. Morfologicheskie osobennosti pecheni pri vozdeistvii vodorastvorimogo soedineniya kremniya [Morphological features of the liver when exposed to a water-soluble silicon compound]. Meditsinskii akademicheskii zhurnal, 2016, vol. 16, no. 4, pp. 71–72.
  8. Grigor’eva E.A., Gordova V.S., Sergeeva V.E., Smorodchenko A.T. Reaktsiya CD68-pozitivnykh kletok pecheni i selezenki krys na postuplenie kremniya s pit’evoi vodoi [Reaction of CD68-positive rat liver and spleen cells on silicon intake with drinking water]. Acta medica Eurasica, 2021, no. 2, pp. 34–43. URL: http://acta-medica-eurasica.ru/single/2021/2/5/.
  9. Kozlov V.A., Sapozhnikov S.P. Bystroe obrazovanie amiloida i tromboobrazovanie pri COVID-19 (kratkii obzor literatury) [Rapid amyloid formation and thrombi formation in COVID-19 (a brief literature review)]. Acta Medica Eurasica, 2021, no. 3, pp. 1–9.
  10. Rahmanin YU.A., Egorova N.A., Mihajlova R.I., Ryzhova I.N., Kochetkova M.G. O gigienicheskom normirovanii soedinenii kremniya v pit’evoi vode (obzor literatury) [On the hygienic rating of silicon compounds in drinking water (literature review)]. Gigiena i sanitariya, 2021, vol. 100, no. 10, pp. 1077–1083.
  11. Sapozhnikov S.P., Gordova V.S., Sergeeva V.E., Kozlov V.A. Coedineniya kremniya i aterogenez (obzor) [Silicon chemicals and atherogenesis (a review)]. Mikroelementy v meditsine, 2022, vol. 23, no. 1, pp. 4–13.
  12. Skripnikova I.A., Gur’ev A.V. Mikroelementy v profilaktike osteoporoza: fokus na kremnii [Micronutrients in the prevention of osteoporosis: focus on silicon]. Osteoporoz i osteopatii, 2014, no. 2, pp. 36–40.
  13. Suslikov V.L., Shevnitsyna O.Yu., Kozlov V.A. Izuchenie vliyaniya khimicheskikh veshchestv, ispol’zuemykh v proizvodstve kremniiorganicheskikh soedinenii, na sostoyanie rabotayushchikh [Study of the influence of chemicals used in the production of organosilicon compounds on the state of workers]. Rossiiskii meditsinskii zhurnal, 2003, no. 6, pp. 30–31.
  14. Athinarayanan J., Alshatwi A.A., Periasamy V.S., Al-Warthan A.A. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells. J Food Sci, 2015, vol. 80, no. 2, pp. 459–464.
  15. Athinarayanan J., Periasamy V.S., Alsaif M.A., Al-Warthan A.A., Alshatwi A.A. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol, 2014, vol. 30, no. 2, pp. 89–100.
  16. Aureli F., Ciprotti M., D’Amato M. et al. Determination of total silicon and SiO2particles using an ICP-MS based analytical platform for toxicokinetic studies of synthetic amorphous silica. Nanomaterials (Basel), 2020, vol. 10, no. 5, p. 888.
  17. Barahona F., Ojea-Jimenez I., Geiss O., Gilliland D., Barrero-Moreno J. Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A, 2016, vol. 1432, pp. 92–100.
  18. Boudard D., Aureli F., Laurent B., Sturm N. et al. Chronic Oral Exposure to Synthetic Amorphous Silica (NM-200) Results in Renal and Liver Lesions in Mice. Kidney Int. Rep, 2019, vol. 4, pp. 1463–1471.
  19. Calomme M., Vanden Berghe D.Supplementation of calves with stabilized orthosilicic acid: Effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage. Biol Trace Elem Res, 1997, vol. 56, pp. 153–165.
  20. Choi M.K., Kim M.H. Dietary Silicon intake of Korean young adult males and its relation to their bone status. Biol Trace Elem Res, 2017, vol. 176, no. 1, pp. 89–104.
  21. Cornu R., Chrétien C., Pellequer Y., Martin H., Béduneau A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch Toxicol, 2020, vol. 94, no. 4, pp. 1191–1202.
  22. Dai C., Huang Y., Zhou Y. Research progress about the relationship between nanoparticles silicon dioxide and lung cancer. Zhongguo Fei Ai Za Zhi, 2014, vol. 17, no. 10, pp. 760–764.
  23. Dekkers S., Krystek P., Peters R.J., Lankveld D.P., Bokkers B.G et al. Presence and risks of nanosilica in food products. Nanotoxicology, 2011; vol. 5, pp. 393–405.
  24. Diao J., Xia Y., Jiang X., Qiu J. et al. Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota-gut-brain axis. J Nanobiotechnology, 2021, vol. 19, no. 1, p. 174.
  25. Dijkman Henry B.P.M., Slaats I., Bult P. Assessment of Silicone Particle Migration Among Women Undergoing Removal or Revision of Silicone Breast Implants in the Netherlands. JAMA Netw Open, 2021, vol. 4, no. 9, e2125381.
  26. Domagk G. Untersuchungen über die Bedeutung des retikuloendothelial Systems für die Entstehung d. Amyloids. Virchows Archiv, 1924, vol. 253, pp. 594–638.
  27. González-Muñoz M.J., Garcimartán A., Meseguer I., Mateos-Vega C.J. et al. Silicic acid and beer consumption reverses the metal imbalance and the prooxidant status induced by aluminum nitrate in mouse brain. J Alzheimers Dis, 2017, vol. 56, no. 3, pp. 917–927.
  28. Grigoreva E.A., Gordova V., Khlupina A., Reznik E. Inflammaging: the silicates seem to be the reason of this process in spleen. Virchows Archiv-European Journal of Pathology, 2021, vol. 479, no. S1, p. 151.
  29. Hofmann T., Schneider S., Wolterbeek A., van de Sandt H. et al. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats. Reproductive Toxicology, 2015, vol. 56, pp. 141–146.
  30. Jarrar B., Al-Doaiss A., Shati A., Al-Kahtani M., Jarrar Q. Behavioural alterations induced by chronic exposure to 10 nm silicon dioxide nanoparticles. IET Nanobiotechnol, 2021, vol. 15, no. 2, pp. 221–235.
  31. Jugdaohsingh R., Anderson S.H., Tucker K.L., Elliott H. et al. Dietary silicon intake and absorption. Am J Clin Nutr, 2002, vol. 75, no. 5, pp. 887–893.
  32. Jugdaohsingh R., Watson A.I.E., Pedro L.D., Powell J.J. the decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover. Bone, 2015, vol. 75, pp. 40–48.
  33. Kim Y.Y., Kim M.H., Choi M.K. Relationship between dietary intake and Urinary Excretion of Silicon in Free-Living Korean Adult Men and Women. Biol Trace Elem Res, 2019, vol. 191, no. 2, pp. 286–293.
  34. Lee J.A., Kim M.K., Song J.H., Jo M.R. et al. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloids Surf B Biointerfaces, 2017, vol. 150, pp. 384–392.
  35. Lidsky TI. Is the Aluminum Hypothesis dead? J Occup Environ Med, 2014, vol. 56, no. 5, pp. 73–79.
  36. Lotfipour F., Shahi S., Farjami A., Salatin S., Mahmoudian M., Dizaj S.M. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int, 2021, e9322282.
  37. Martin K.R. Silicon: the health benefits of a metalloid. in Interrelations between Essential Metal Ions and Human Diseases, 2013, vol. 6, pp. 451–473.
  38. Meenakshi A. Cell culture media: a review. Mater Methods, 2013, vol. 3, pp. 175–203.
  39. Murugadoss S., Lison D., Godderis L., Van Den Brule S. et al. Toxicology of silica nanoparticles: an update. Arch Toxicol, 2017, vol. 91, no. 9, pp. 2967–3010.
  40. Peters R., Kramer E., Oomen A.G., Rivera Z.E. et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano, 2012, vol. 6, no. 3, pp. 2441–2451.
  41. Prescha A., Zabłocka-Słowińska K., Grajeta H. Dietary silicon and its impact on plasma silicon levels in the Polish Population. Nutrients, 2019, vol. 11, no. 5, p. 980.
  42. Pritchard A., Nielsen B.D., Robison C., Manfredi J.M. Low dietary silicon supplementation may not affect bone and cartilage in mature, sedentary horses. J Anim Sci, 2020, vol. 98, no. 12, skaa377.
  43. Pritchard A., Robison C., Nguyen T., Nielsen B.D. Silicon supplementation affects mineral metabolism but not bone density or strength in male broilers. PLoS One, 2020, vol. 15, no. 12, e0243007.
  44. Radovanovic Z., Djindjic B., Dzopalic T., Veljkovic A. et al. Effect of silicon-rich water intake on the systemic and peritoneal inflammation of rats with chronic low levels of aluminum ingestion. J Trace Elem Med Biol, 2018, vol. 46, pp. 96–102.
  45. Robberecht H., Van Cauwenbergh R., Van Vlaslaer V., Hermans N. Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. Sci Total Environ, 2009, vol. 407, no. 16, p. 4777–4782.
  46. Rondanelli M., Faliva M.A., Peroni G., Gasparri C. et al. Silicon: a neglected micronutrient essential for bone health. Exp Biol Med (Maywood), 2021, vol. 246, no. 13, pp. 1500–1511.
  47. Sadek S.A., Soliman A.M., Marzouk M. Ameliorative effect of Allolobophora caliginosa extract on hepatotoxicity induced by silicon dioxide nanoparticles. Toxicol Ind Health, 2016, vol. 32, no. 8, pp. 1358–1372.
  48. Sripanyakorn S., Jugdaohsingh R., Dissayabutr W., Anderson S.H. et al. the comparative absorption of silicon from different foods and food supplements. Br J Nutr, 2009, vol. 102, no. 6, pp. 825–834.
  49. Tassinari R., Di Felice G., Butteroni C., Barletta B. et al. Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: a multitarget approach. Food Chem Toxicol, 2020, vol. 137, e111168.
  50. Tassinari R., Martinelli A., Valeri M., Maranghi F. Amorphous silica nanoparticles induced spleen and liver toxicity after acute intravenous exposure in male and female rats. Toxicol Ind Health, 2021, vol. 37, no. 6, pp. 328–335.
  51. van der Zande M., Vandebriel R.J., Groot M.J., Kramer E. et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol, 2014, vol. 11, p. 8. DOI: 1186/1743-8977-11-8.
  52. van Kesteren P.C., Cubadda F., Bouwmeester H., van Eijkeren J.C. et al. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology, 2015, vol. 9, pp. 442–452.
  53. Wolterbeek A., Oosterwijk T., Schneider S., Landsiedel R. et al. Oral two-generation reproduction toxicity study with NM-200 synthetic amorphous silica in Wistar rats. Reproductive Toxicology, 2015, vol. 56, pp. 147–154.
  54. Yang X., He C., Li J. et al. Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett, 2014, vol. 229, pp. 240–249.
  55. Ye Y., Hui L., Lakpa K.L., Xing Y., Wollenzien H. et al. Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Can J Physiol Pharmacol, 2019, vol. 97, no. 4, pp. 297–305.
  56. Yoo N.K., Jeon Y.R., Choi S.J. Determination of two differently manufactured silicon dioxide nanoparticles by cloud point extraction approach in intestinal cells, intestinal barriers and tissues. Int J Mol Sci, 2021, vol. 22, no. 13, e7035.
  57. Yu Y., Duan J., Li Y., Li Y. et al. Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. Int J Nanomedicine, 2017, vol. 12, pp. 6045–6057.
  58. Yu Y., Li Y., Wang W., Jin M. et al. Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS One, 2013, vol. 8, no. 4, e61346.

About authors

Grigoreva Evgeniia A.
Post-Graduate Student, Department of Medical Biology with a course of Microbiology and Virology, Chuvash State University, Russia, Cheboksary (shgrev@yandex.ru; ORCID: https://orcid.org/0000-0003-3626-2750)
Gordova Valentina S.
Candidate of Medical Sciences, Associate Professor, Department
of Fundamental Medicine, Immanuel Kant Baltic Federal University, Russia, Kaliningrad (crataegi@rambler.ru; ORCID: https://orcid.org/0000-0001-5109-9862)
Sergeeva Valentina E.
Doctor of Biological Sciences, Professor, Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (kaf-biology@yandex.ru; ORCID: https://orcid.org/0000-0003-3471-5226)

Article link

Grigoreva E.A., Gordova V.S., Sergeeva V.E. The Effect of Silicon Nanoparticles and Water-Soluble Silicates on the Liver (comparison of our own research results with the literature data) [Electronic resource] // Acta medica Eurasica. – 2022. – №4. P. 108-120. – URL: https://acta-medica-eurasica.ru/en/single/2022/4/13/. DOI: 10.47026/2413-4864-2022-4-108-120.