Single article

Kozlov V., Sapozhnikov S., Golenkov A., Sheptukhina A., Nikolaeva O.

Amiloid – it is bad? AMiloid from the point of view of supramolecular chemistry

Keywords: amiloid, nanotubes, supramolecular interactions, parametabolism

The Amiloid illness and process formation of an amiloid are considered from the point of view of supramolecular chemistry and the adaptation theory. The conclusion that amiloidos – the sanogenetic reaction leading to an illness owing to redundancy of the molecular answer is drawn. We assume that squirrels predecessors of an amiloid enter in supramolecular interaction with formation of nanotubes only having got to an adverse ion-molecular environment. What true role of synthesis of proteins of predecessors of an amiloid at the congenital or acquired chronic inflammatory pathology remains to unknown. The question of need of clarification of a physiological role the amiloid of fragments is raised.


  1. Ansari N.A., Rashid Z. Nefermentativnoe glikirovanie belkov: ot diabeta do raka [No fermentativ glikirovation of proteins: from diabetes to a cancer]. Biomeditsinskaya khimiya [Biomedical chemistry], 2010, vol. 56, iss. 2, pp. 168–178.
  2. Voropai E.S., Samtsov M.P., Kaplevskii K.N., Maskevich A.A., Stepuro V.I., Povarova O.I., Kuznetsova I.M., Turoverov K.K., Fink A.L., Uverskii V.N. Cpektral’nye svoistva tioflavina T i ego kompleksov s amiloidnymi fibrillami [Spectral properties of a tioflavin of T and its complexes with amiloid fibrilla]. prikl. Spektr [Journal of applied spectroscopy], 2003, vol. 70, no. 6, pp. 767–773.
  3. Dil’man V.M. Chetyre modeli meditsiny [Four models of medicine]. Moscow, Meditsina Publ., 1987, 288 p.
  4. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Golenkov A.V. Parametabolizm kak nespetsificheskii modifikator supramolekulyarnykh vzaimodeistvii v zhivykh sistemakh [Parametabolism as the nonspecific modifier of supramolecular interactions in live systems]. Vestnik RAMN [Bulletin of the Russian Academy of Medical Science], 2015, no. 4, pp. 397–402.
  5. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Golenkov A.V. Sravnitel’nyi analiz razlichnykh modelei amiloidoza [Comparative analysis of various models of an amiloidoz]. Vestnik RAMN [Bulletin of the Russian Academy of Medical Science], 2015, no. 1, pp. 5–11.
  6. Kudinova N.V., Kudinov A.R., Berezov T.T. Amiloid beta: funktsional’nyi belok ili biologicheskii musor? [Amiloid beta: functional protein or biological garbage?]. Biomeditsinskaya khimiya [Biomedical chemistry], 2007, vol. 53, iss. 2, pp. 119–127.
  7. Kuznetsova I.M. Mekhanizmy vozniknoveniya i svoistva promezhutochnykh, nepravil’no svernutykh i agregirovannykh form belkov: avtoref. dis. … d-ra biol. nauk [Mechanisms of emergence and property of the intermediate, incorrectly curtailed and aggregated forms of proteins. Doct. Diss.]. St. Petersburg, 2006, 40 p.
  8. Nikolaeva O.V., Sheptukhina A.I., Kozlov V.A., Sapozhnikov S.P. Morfologicheskie izmeneniya parenkhimatoznykh organov pri eksperimental’noi modeli amiloidoza [Morphological changes of parenchymatous bodies at experimental model of an amiloidoz]. Mezhdunarodnyi studencheskii nauchnyi vestnik [International student’s scientific bulletin], 2015, no. 2, pp. 58–59. Available at:
  9. Baldwin A.J., Knowles T.P., Tartaglia G., Fitzpatrick A., Devlin G., Shammas S., Waudby C.A., Mossuto M.F., Gras S.L., Christodoulou J., Anthony-Cahill S.J., Barker P.D., Vendruscolo M., Dobson C.M. Metastability of native proteins and the phenomenon of amyloid formation. Am. Chem. Soc., 2011, vol.133, pp. 14160–14163.
  10. Bancroft J.D., Stevens A. Theory and practice of histological techniques. 2nd Edinburgh, London, Churchill Livingstone, 1982.
  11. Baxa U., Speransky V., Steven A.C., Wickner R.B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Natl. Acad. Sci. USA, 2002, vol. 99,
    pp. 5253–5260.
  12. Bonar L.C., Cohen A.S., Skinner M. Characterization of the amyloid fibril as a cross-beta protein. Soc. Exp. Biol. Med., 1969, vol. 131, no. 4, pp. 1373–1375.
  13. Brigger D., Muckle T. Comparison of Sirius red and Congo red as stains for amyloid in animal tissues. Histochem. Cytochem., 1975, vol. 23, no. 1, pp. 84–88.
  14. Burns J., Pennock C.A., Stoward P.J. The specificity of the staining of amyloid deposits with thioflavine T. pathology and bacteriology, 1967, vol. 94, p. 337.
  15. Carrotta R., Manno M., Bulon, D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  16. Caudron F., Barral Y. A Super-Assembly of Whi3 Encodes Memory of Deceptive Encounters by Single Cells during Yeast Courtship. Cell., 2013, vol. 155, no. 6, pp. 1244–1257.
  17. Chapman M.R., Robinson L.S., Pinkner J.S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science (New York), 2002, vol. 295, pp. 851–855.
  18. Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Rev. Biochem., 2006, vol. 75, pp. 333–366.
  19. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersa F.G.H., Dijkhuizen L., Wosten H.A.B. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes & development, 2003, no. 17, pp. 1714–1726.
  20. David M.P., Concepcion G.P., Padlan E.A. Using simple artificial intelligence methods for predicting amyloidogenesis in BMC Bioinformatics, 2010, vol. 11, no. 79, 13 p.
  21. Dobson C.M. Protein folding and misfolding. Nature, 2003, vol. 426(6968), pp. 884–890.
  22. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M., Balch W.E., Kelly J.W. Functional amyloid formation within mammalian tissue. PLos Biol., 2006, no. 4, pp. 6–26.
  23. Gasior P., Kotulska M. FISH Amyloid a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of BMC Bioinformatics, 2014, vol. 15, no. 54, 8 p.
  24. Glenner G.G., Terry W., Harada M., Isersky C., Page D. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, vol. 172, no. 3988, pp. 1150–1151.
  25. Grimaldi A., Girardello R., Malagoli D., Falabella P., Tettamanti G., Valvassori R., Ottaviani E., de Eguileor M. Amyloid/Melanin distinctive mark in invertebrate immunity. ISJ, 2012, 9, pp. 153–162.
  26. Hamley W. Peptide fibrillization. Angew Chem. Int. Ed. Engl., 2007, vol. 46, no. 43, pp. 8128–8147.
  27. Hamodrakas S.J., Hoenger A., Iconomidou V.A. Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. Struct. Biol., 2004, vol. 145, pp. 226–235.
  28. Hurshman A.R., White J.Т., Powers E.T., Kelly J.W. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry, 2004, 43, pp. 7365–7381.
  29. Knowles T.P.J., Vendruscolo М., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 6, pp. 384–396.
  30. Koudinov A.R., Berezov T.T., Koudmova N.V. The Levels of Soluble Amyloid Beta in Different High Density Lipoprotein Subfractions Distinguish Alzheimer’s and Normal Aging Cerebrospinal Fluid Implication for Brain Cholesterol Pathology. Lett., 2001, vol. 314, pp. 115–118.
  31. Koudinov A.R., Koudinova N.V. Amyloid beta protein restores hippocampal long-term potentiation: a central role for cholesterol? Lipids., 2003, vol. 1, no. 8. Available at:
  32. Koudinova N.V. Alzheimer’s amyloid beta oligomers and lipoprotein apoAb: mistaken identity is possible. Bioessays., 2003, vol. 25, p. 1024.
  33. Kumar S., Udgaonkar J.B. Conformational conversion may precede or follow aggregate elongation on alternative pathways ofamyloid protofibril formation. J. Mol. Biol., 2009, vol. 385, no. 4, pp. 1266–1276.
  34. Kumar S., Udgaonkar J.B. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry, 2009, vol.48, no. 27, pp. 6441–6449.
  35. Kumar S., Udgaonkar J.B. Structurally distinct amyloidprotofibrils form on separate pathways of aggregation of a smallprotein. Biochemistry, 2009, vol. 48, pp. 6441–6449.
  36. Kurnellas P., Adams C.M., Sobel R.A., Steinman L., Rothbard J.B. Amyloid Fibrils Composed of Hexameric Peptides Attenuate Neuroinflammation. Sci. Transl. Med., 2013, vol. 5, Issue 179, p. 179ra42.
  37. Malin D.H., Crothers M.K., Lake J.R., Goyarzu P., Plotner R.E., Garcia S.A., Spell S.H., Tomsic B.J., Giordano T., Kowall N.W. Hippocampal injections of amyloid beta-peptide 1-40 impair subsequent one-trial/day reward learning. Learn. Mem., 2001, vol. 76, no. 2, pp. 125–137.
  38. McDonald M.P., Dahl E.E., Overmier J.B. Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Neural. Biol., 1994, vol. 62, no. 1, pp. 60–67.
  39. Modle, A.J., Gast K., Lutsch G., Damaschun G. Assembly of amyloid protofibrils via critical oligomers~a novel pathway of amyloid formation. Mol. Biol., 2003, vol. 325, pp. 135–148.
  40. Carrotta R., Manno M., Bulon D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008.
  41. Montero A., Gastaminza P., Law M., Cheng G., Chisari F.V., Ghadiri M.R. Self-assembling peptide nanotubes with antiviral activity against hepatitis C virus. Biol., 2011, vol. 18, no. 11, pp. 1453–1462.
  42. Perutz M.F., Finch J.T., Berriman J., Lesk A. Amyloid fibers are water-filled nanotubes. Natl. Acad. Sci. USA, 2002, vol. 99, no. 8, pp. 5591–5595.
  43. Plant D., Boyle J.P., Smith I.F., Peers C., Pearson H.A. The production of amyloid beta peptide is a critical requirement for the viability ofcentral neurons. J. Neurosci., 2003, vol. 23, pp. 5531–5535.
  44. Romhányi G. Selective demonstration of amyloid deposits and methodical possibilities of analysis of their ultrastructural differences. Allg. Pathol., 1979, vol. 123, no. 1-2, pp. 9–16.
  45. Rothbard J.B., Zhao X., Sharpe O., Strohman M.J., Kurnellas M., Mellins E.D., Robinson W.H., Steinman L. Chaperone activity of α,β-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. Immunol., 2011, vol. 186, no. 7, pp. 4263–4268.
  46. Sawaya M.R., Sambashivan S., Nelson R., Ivanova M.I., Sievers S.A., Apostol M.I., Thompson M.J., Balbirnie M., Wiltzius Jed J. W., McFarlane H.T., Madsen A., Riekel C., Eisenberg D. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature, 2007, vol. 447, pp. 453–457.
  47. Serio T.R., Cashikar A.G., Kowal A.S., Sawicki J., Moslehi J.J., Serpell L., Arnsdorf M.F., Lindquist S.L. Nucleated conformation conversion and the replication of conformational information by a prion determinant. Science, 2000, vol. 289, pp. 1317–1321.
  48. Shirahama T., Cohen A.S. High-resolution electron microscopic analysis of the amyloid fibril. Cell. Biol., 1967, vol. 33, no. 3, pp. 679–708.
  49. Slotta U., Hess S., Spiess K., Stromer Т., Serpell L., Scheibel T. Spider silk and amyloid fibrils: a structural comparison. Biosci., 2007, no. 7, pp. 183–188.
  50. Stanislawski J., Kotulska M., Unold O. Machine learning methods can replace 3D profile method in classification of amyloidogenic BMC Bioinformatics, 2013, vol. 14, no. 21, 9 p.
  51. Sunde M., Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in protein chemistry, 1997, vol. 50, pp. 123–159.
  52. Wojciechowicz , Lu C.F., Kurjan J., Lipke P.N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol. Cell Biol., 1993, vol. 13, no. 4, pp. 2554–2563.
  53. Xu S., Bervis B., Arnsdorf M.F. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? J., 2001,
    vol. 81, pp. 446–454.
  54. Zhang C., Khandelwal P.J., Chakraborty R., Cuellar T.L.,Sarangi S., Patel S.A., Cosentino C.P., O’Connor M., Lee J.C., Tanzi R.E., Saunders A.J. An AICD-based functional screen to identify APP metabolism regulators. Neurodegener., 2007, vol. 2, no. 15, 19 p.

About authors

Kozlov Vadim A.
Doctor of Biological Sciences, Candidate of Medical Sciences, Professor of the Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (; ORCID:
Sapozhnikov Sergey P.
Doctor of Medical Sciences, Head of the Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (; ORCID:
Golenkov Andrey V.
Doctor of Medical Sciences, Professor, Head of the Department of Psychiatry, Medical Psychology and Neurology, Chuvash State University, Russia, Cheboksary (; ORCID:
Sheptukhina Alena Igorevna
medical faculty 6th year student, Chuvash State University, Russia, Cheboksary (; )
Nikolaeva Oksana Vladislavovna
psychiatry, medical psychology and neurology department clinical resident, Chuvash State University, Russia, Cheboksary (; )

Article link

Kozlov V., Sapozhnikov S., Golenkov A., Sheptukhina A., Nikolaeva O. Amiloid – it is bad? AMiloid from the point of view of supramolecular chemistry [Electronic resource] // Acta medica Eurasica. – 2016. – №1. P. 50-60. – URL: