Статья журнала

Фуфаева А.И., Козлов В.А., Сапожников С.П., Петрова Ю.В., Александрова В.Ю.

Влияние красного виноградного вина и его сочетания с гексозами на формирование стандартной модели амилоидной болезни

Ключевые слова: красное сухое вино, полифенолы красного вина, амилоидоз, амилоидное поражение почек, амилоидное поражение печени

Цель исследования – изучить влияние полифенолов красного вина и их сочетания с простыми шестиуглеродными кетоспиртами на формирование амилоидной болезни у молодых мышей, воспроизведенной с помощью стандартизированной модели амилоидоза. В эксперименте на молодых мышах самцах одномесячного возраста формирование модели амилоидной болезни с помощью подкожного введения 0,3 мл 10%-ного водного раствора соевого заменителя сливок ТУ 9199-004-58706213-10 (15 инъекций через день без соблюдения асептики) вызывало генерализованный амилоидоз печени, почек и селезенки со значительным увеличением влажной массы органов до 22,0±0,1%, 35,0±0,5 и 66,0±0,5%, соответственно. Кроме того, наблюдалось выраженное образование амилоидных депозитов в ткани органов, что было установлено при окрашивании пяти микронных парафиновых срезов конго красным. Употребление на фоне формирования амилоидной модели красного сухого вина Каберне (Крым) и его сочетания с 5% фруктозы статистически значимо уменьшало как изменение влажной массы органов, так и гистологически контролируемое отложение амилоида в ткани. Нами сделан вывод, что употребление красного сухого виноградного вина в режиме свободного суточного потребления профилактирует развитие гистоморфологических изменений исследуемых органов (печени, почки, селезенки) и уменьшает количество конго-положительного вещества в этих органах, эффект усиливается при сочетании красного вина с фруктозой.

Fufaeva A., Kozlov A., Sapozhnikov S., Petrova Yu., Alexandrova V.

Influence of red grape wine and its combinations with hexoses in standard amyloid disease model formation

Keywords: red dry wine, the red wine polyphenols, amyloidosis, amyloid kidney damage, amyloid liver damage

The research aim was to study the effect of red wine polyphenols and their combination with simple six-carbon keto-alcohols on amyloid disease development in young mice, reproduced using a standardized model of amyloidosis. In the experiment on one-month-old age young male mice, formation of amyloid disease model by subcutaneous injection of 0,3 ml of a 10% aqueous solution of soy cream substitute TU 9199-004-58706213-10, (15 injections every other day without aseptic treatment) caused generalized amyloidosisof the liver, kidneys and the spleen with a significant increase in wet weight of organs to 22,0±0,1%, 35,0±0,5 and 66,0±0,5%, respectively. In addition, a marked formation of amyloid deposits in the tissues of organs was observed, which was established by staining 5-micron paraffin sections with Congo red. Intake of red dry wine Cabernet (Crimea) and its combination with 5% fructose against the background of amyloid model formation statistically significantly reduced both the change in the wet weight of organs and histologically controlled deposition of amyloid in the tissue. We concluded that red dry grape wine consumption in the regime of free daily intake prevents the development of histomorphological changes in the organs under investigation (liver, kidney, spleen) and reduces the amount of Congo-positive substance in these organs, the effect is enhanced by combining red wine with fructose.

Литература

  1. Козлов В.А., Голенков А.В., Сапожников С.П. Минорные примеси потребляемого алкоголя как причина смертности населения // Наркология. 2013. № 9. С.66–70.
  2. Козлов В.А., Голенков В.А., Сапожников С.П. Эффекты красных сухих вин и других алкогольных напитков на развитие и течение болезни Альцгеймера: очевидное, сомнительное и неизвестное // Психическое здоровье. 2014. Т.12, № 6(97). С. 81–87.
  3. Митрасов Ю.Н., Ильина О.Г., Козлов В.А., Соснов Д.А. Реакция этаналя со свободными протеиногенными аминокислотами // Наука и инновации – 2016: сб. материалы XI Междунар. науч. школы-семинара. Йошкар-Ола: Изд-во Поволжского гос. технол. ун-та, 2016. С. 241–245.
  4. Нужный В.П., Савчук С.А., Демешина И.В., Забирова И.Г., Листвина В.П., Самойлик Д.В., Суркова Л.А., Тезиков Е.Б. Химический состав, острая и подострая токсичность крепких алкогольных напитков домашнего изготовления (самогоны) // Проблемы идентификации алкогольсодержащей продукции: сб. тр. / Гос. комитет по стандартизации и метрологии РФ; Академия стандартизации, метрологии и сертификации. М.: Госстандарт, 2001. С. 138–154.
  5. Нужный В.П., Львова Ю.А., Забирова И.Г., Суркова Л.А., Листвина В.П., Самойлик Л.В., Демешина И.В., Савчук С.А., Львова Ю.А. Сравнительное экспериментальное исследование острого и подострого токсического действия коньяка и виски // Наркология. 2002. № 10. С. 46–52.
  6. Пат. 2572721 РФ, МПК G09B 23/28 (2006/01), A61K 35/34 (2015/01). Способ моделирования экспериментального амилоидоза у животных / Козлов В.А., Сапожников С.П., Шептухина А.И., Карышев П.Б.; патентообладатель Чуваш. гос. ун-т. № 2014144674/15; заяв. 05.11.2014; опубл. 20.01.2016, Бюл. № 28 с.
  7. Шептухина А.И., Николаева О.В., Козлов В.А., Сапожников С.П. Роль этанола в формировании экспериментального амилоидоза // Современная биология: актуальные вопросы: материалы XIV Междунар. науч.-практ. конф. (Санкт-Петербург, 13-14 ноября 2015 г.) СПб.: Научный фонд «Биолог», 2015. С. 47–
  8. Abou-Agag L.H., Aikens M.L., Tabengwa E.M., Benza R.L., Shows S.R., Grenett H.E., Booyse F.M. Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelia l cells // Alcohol. Clin. Exp. Res. 2001. N 25. P. 155–162.
  9. Anekonda T.S. Resveratrol a boon for treating Alzheimer’s disease? Brain Res. Rev., 2006, vol. 52, no. 2, pp. 316–326. doi: 10.1016/j.brainresrev.2006.04.004.
  10. Baldwin A.J., Knowles T.P., Tartaglia G., Fitzpatrick A., Devlin G., Shammas S., Waudby C.A., Mossuto M.F., Gras S.L., Christodoulou J., Anthony-Cahill S.J., Barker P.D., Vendruscolo M., Dobson C.M. Metastability of native proteins and the phenomenon of amyloid formation. Am. Chem. Soc., 2011, vol. 133, pp. 14160–14163. doi: 10.1021/ja2017703.
  11. Carrotta R., Manno M., Bulon D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008. doi: 10.1074/jbc.M500052200
  12. Chen D., Steele A.D., Lindquist S., Guarente L. Increase in activityduring calorie restriction requires Sirt1. Science, 2005, no. 310, p. 1641. doi: 10.1126/science.1118357.
  13. Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science, 2015, vol. 349, no. 6248. doi: 10.1126/science.1255555.
  14. Guarente L. Calorierestriction and SIR2 genes – towards a mechanism. Ageing. Dev., 2005, no. 126, pp. 923–928. doi: 10.1016/j.mad.2005.03.013.
  15. Ho L., Ferruzzi M.G., Janle E.M., Wang J., Gong B., Chen T.Y., Lobo J., Cooper B., Wu Q.L., Talcott S.T., Percival S.S., Simon J.E., Pasinetti G.M. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronideasa novel intervention for Alzheimer’s disease. FASEBJ, 2013, vol. 27, no. 2, pp. 769–781. doi: 10.1096/fj.12-212118.
  16. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., Scherer B.,Sinclair D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, no. 425, pp. 191–196. doi: 10.1038/nature01960.
  17. Knowles T.P.J., Vendruscolo М., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 6, pp. 384–396. doi: 10.1038/nrm3810.
  18. Kumar S., Udgaonkar J.B. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry, 2009, vol. 48, no. 27, pp. 6441 doi: 10.1021/bi900682w.
  19. Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-betapeptides. Biol. Chem., 2005, no. 280, pp. 37377–37382. doi:10.1074/jbc.M508246200.
  20. Nelson R., Sawaya M.R., Balbirnie M., Madsen A., Riekel C., Grothe R., Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, vol. 435, no. 7043, pp. 773–778. doi: 10.1038/nature03680
  21. Perutz M.F., Finch J.T., Berriman J., Lesk A. Amyloid fibers are water-filled nanotubes. Natl. Acad. Sci. USA, 2002, vol. 99, no. 8, pp. 5591–5595.
  22. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, no. 434, pp. 113–118. doi: 10.1038/nature03354.
  23. Silva J.L., Cordeiro Y. The «Jekyll and Hyde» Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. Biol. Chem., 2016, vol. 291, no. 30, pp. 15482-15490. doi: 10.1074/ jbc.R116.733428.
  24. Sipe J.D., Benson M.D., Buxbaum J.N., Ikeda S.I., Merlini G., Saraiva M.J., Westermark P. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid., 2016, vol. 23, no. 4, pp. 209 doi: 10.1080/13506129.2016.1257986.
  25. Tycko R., Wickner R.B. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Chem. Res., 2013, vol. 46, no. 7, pp. 1487–1496. doi: 10.1021/ar300282r.
  26. Yang S.H., Kim J.S., Oh T.J., Kim M.S., Lee S.W., Woo S.K., Cho H.S., Choi Y H., Kim Y.H., Rha S.Y., Chung H.C., An S.W. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. J. Oncol., 2003, no. 22, pp. 741–750.
  27. Zhang C., Khandelwal P.J., Chakraborty R., Cuellar T.L., Sarangi S., Patel S.A., Cosentino C.P., O’Connor M., Lee J.C., Tanzi R.E., Saunders A.J. An AICD-based functional screen to identify APP metabolism regulators. Neurodegener, 2007, vol. 2, no. 15, 19 p. doi: 10.1186/1750-1326-2-15.

References

  1. Kozlov V.A., Golenkov A.V., Sapozhnikov S.P. Minornye primesi potreblyaemogo alkogolya kak prichina smertnosti naseleniya [Minor admixtures of consumed alcohol as the cause of mortality of the population]. Narcology, 2013, no. 9, pp. 66–70.
  2. Kozlov V.A., Golenkov V.A., Sapozhnikov S.P. Effekty krasnykh sukhikh vin I drugikh alkogol’nykh napitkov na razvitie I techenie bolezni Al’tsgeimera: ochevidnoe, somnitel’noe I neizvestnoe [The effects of red dry wines and other alcoholic beverages on the development and course of Alzheimer’s disease: obvious, questionable and unknown]. Mental Health, 2014, vol. 12, no. 6(97), pp. 81–87.
  3. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Karyshev P.B. Sposob modelirovaniya eksperimental’nogo amiloidoza u zhivotnykh [A Method for Modeling Experimental Amyloidosis in Animals]. Patent RF, no. 2572721, 2014.
  4. Mitrasov Yu.N., Ilyina O.G., Kozlov V.A., Sosnov D.A. Reaktsiyaetanalya so svobodnymi proteinogennymi aminokislotami [Reaction of ethanal with free proteinogenic amino acids]. Nauka i innovatsii – 2016: sb. materialy XI Mezhdunar. nauch. shkoly-seminara [Proc. of XI Int. Sci. School-Seminar «Science and Innovations – 2016»]. Yoshkar-Ola, 2016, pp. 241–245.
  5. Nuzhnyi V.P., LvovaYu.A., Zabirova I.G., Surkova L.A., Listvina V.P., Samoilik L.V., Demeshina I.V., Savchuk S.A., Lvov Yu.A. Sravnitel’noe eksperimental’noe issledovanie ostrogo I podostrogo toksicheskogo deistviya kon’yaka I viski [Comparative experimental study of acute and subacute toxic effects of cognac and whiskey]. Narcology, 2002, no. 10, pp. 46–52.
  6. Nuzhnyi V.P, Savchuk S.A., Demeshina I.V., Zabirova I.G., Listvina V.P., Samoylik D.V., Surkova L.A., Tezikov E.B. Khimicheskii sostav, ostraya I podostraya toksichnost’ krepkikh alkogol’nykh napitkov domashnego izgotovleniya (samogony) [Chemical composition, acute and acute toxicity of strong home-made alcoholic drinks (moonshine)]. Problemy identifikatsii alkogol’soderzhashchei produktsii: sb. tr. [Problems of identification of alcohol-containing products]. Moscow, 2001, pp. 138–154.
  7. Sheptukhina A.I., Nikolaeva O.V., Kozlov V.A., Sapozhnikov S.P. Rol’ etanola v formirovanii eksperimental’nogo amiloidoza [The ethanol role in the formation of experimental amyloidosis]. Sovremennaya biologiya: aktual’nye voprosy: materialy XIV Mezhdunar. nauch.-prakt. konf. (Sankt-Peterburg, 13-14 noyabrya 2015 g.) [Proc. of XIV Sci. Conf. «Modern Biology: Current Issues»]. St. Petersburg, 2015, pp. 47–50.
  8. Abou-Agag L.H., Aikens M.L., Tabengwa E.M., Benza R.L., Shows S.R., Grenett H.E., Booyse F.M. Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelia l cells // Alcohol. Clin. Exp. Res. 2001. N 25. P. 155–162.
  9. Anekonda T.S. Resveratrol a boon for treating Alzheimer’s disease? Brain Res. Rev., 2006, vol. 52, no. 2, pp. 316–326. doi: 10.1016/j.brainresrev.2006.04.004.
  10. Baldwin A.J., Knowles T.P., Tartaglia G., Fitzpatrick A., Devlin G., Shammas S., Waudby C.A., Mossuto M.F., Gras S.L., Christodoulou J., Anthony-Cahill S.J., Barker P.D., Vendruscolo M., Dobson C.M. Metastability of native proteins and the phenomenon of amyloid formation. Am. Chem. Soc., 2011, vol. 133, pp. 14160–14163. doi: 10.1021/ja2017703.
  11. Carrotta R., Manno M., Bulon D., Martorana V., San Biagio P.L. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Biol. Chem., 2005, vol. 280, pp. 30001–30008. doi: 10.1074/jbc.M500052200
  12. Chen D., Steele A.D., Lindquist S., Guarente L. Increase in activityduring calorie restriction requires Sirt1. Science, 2005, no. 310, p. 1641. doi: 10.1126/science.1118357.
  13. Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science, 2015, vol. 349, no. 6248. doi: 10.1126/science.1255555.
  14. Guarente L. Calorierestriction and SIR2 genes – towards a mechanism. Ageing. Dev., 2005, no. 126, pp. 923–928. doi: 10.1016/j.mad.2005.03.013.
  15. Ho L., Ferruzzi M.G., Janle E.M., Wang J., Gong B., Chen T.Y., Lobo J., Cooper B., Wu Q.L., Talcott S.T., Percival S.S., Simon J.E., Pasinetti G.M. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronideasa novel intervention for Alzheimer’s disease. FASEBJ, 2013, vol. 27, no. 2, pp. 769–781. doi: 10.1096/fj.12-212118.
  16. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., Scherer B.,Sinclair D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, no. 425, pp. 191–196. doi: 10.1038/nature01960.
  17. Knowles T.P.J., Vendruscolo М., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, vol. 15, no. 6, pp. 384–396. doi: 10.1038/nrm3810.
  18. Kumar S., Udgaonkar J.B. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Biochemistry, 2009, vol. 48, no. 27, pp. 6441 doi: 10.1021/bi900682w.
  19. Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-betapeptides. Biol. Chem., 2005, no. 280, pp. 37377–37382. doi:10.1074/jbc.M508246200.
  20. Nelson R., Sawaya M.R., Balbirnie M., Madsen A., Riekel C., Grothe R., Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, vol. 435, no. 7043, pp. 773–778. doi: 10.1038/nature03680
  21. Perutz M.F., Finch J.T., Berriman J., Lesk A. Amyloid fibers are water-filled nanotubes. Natl. Acad. Sci. USA, 2002, vol. 99, no. 8, pp. 5591–5595.
  22. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005, no. 434, pp. 113–118. doi: 10.1038/nature03354.
  23. Silva J.L., Cordeiro Y. The «Jekyll and Hyde» Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. Biol. Chem., 2016, vol. 291, no. 30, pp. 15482-15490. doi: 10.1074/ jbc.R116.733428.
  24. Sipe J.D., Benson M.D., Buxbaum J.N., Ikeda S.I., Merlini G., Saraiva M.J., Westermark P. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid., 2016, 23, no. 4, pp. 209213. doi: 10.1080/13506129.2016.1257986.
  25. Tycko R., Wickner R.B. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Chem. Res., 2013, vol. 46, no. 7, pp. 1487–1496. doi: 10.1021/ar300282r.
  26. Yang S.H., Kim J.S., Oh T.J., Kim M.S., Lee S.W., Woo S.K., Cho H.S., Choi Y H., Kim Y.H., Rha S.Y., Chung H.C., An S.W. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. J. Oncol., 2003, no. 22, pp. 741–750.
  27. Zhang C., Khandelwal P.J., Chakraborty R., Cuellar T.L., Sarangi S., Patel S.A., Cosentino C.P., O’Connor M., Lee J.C., Tanzi R.E., Saunders A.J. An AICD-based functional screen to identify APP metabolism regulators. Neurodegener, 2007, vol. 2, no. 15, 19 p. doi: 10.1186/1750-1326-2-15.

Сведения об авторах

Фуфаева Алена Игоревна
аспирантка кафедры биологии и микробиологии, Чувашский государственный университет, Россия, Чебоксары (priffetik@bk.ru)
Козлов Вадим Авенирович
доктор биологических наук, кандидат медицинских наук, профессор кафедры медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (pooh12@yandex.ru)
Сапожников Сергей Павлович
доктор медицинских наук, профессор, заведующий кафедрой медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (adaptogon@mail.ru)
Петрова Юлия Викторовна
студентка III курса, Чувашский государственный университет, Россия, Чебоксары (yulya-cbx@mail.ru)
Александрова Вера Юрьевна
студентка III курса, Чувашский государственный университет, Россия, Чебоксары (verochka789@mail.ru)

Ссылка на статью

Фуфаева А.И., Козлов В.А., Сапожников С.П., Петрова Ю.В., Александрова В.Ю. Влияние красного виноградного вина и его сочетания с гексозами на формирование стандартной модели амилоидной болезни [Электронный ресурс] // Acta medica Eurasica. – 2018. – №1. – С. 42-51. – URL: http://acta-medica-eurasica.ru/single/2018/1/6/.