UDC: 616.311-611.018.21-616-008.9
BBC: 28.706
Matveeva M.D., Golubtsova N.N.
Features of proliferative activity of fibroblasts in the oral mucosa depending on body weight and age in humans are shown
Keywords: oral mucosa, fibroblasts, proliferation, aging, obesity, lack of nutrients
This article provides a review of the literature on proliferation of fibroblasts in the oral mucosa in the normal condition, in the group of the elderly and those with eating disorders. The purpose of the review is to summarize data from the world literature on structural and regeneration features of the oral mucosa and the relationship of these processes with age and nutritional status disorders. The oral mucosa is not only a gateway for penetration of microorganisms, but also a primary barrier. One of the main properties of the oral mucosa, regenerative one, is performed by fibroblasts, which are actively involved in the wound healing process. Fibroblasts have unusual regenerative abilities and can also take derivative into other types of cells when exposed to certain conditions, which indicates their high potential for multidirectional differentiation. Being the main components that create a new extracellular matrix of connective tissues, they support metabolism of the tissue being formed in case of damage. The proliferation phase during mucosal lesions healing begins a few days after injury, lasts up to three weeks and is characterized by high levels of secretion of growth factors. The processes of fibroblast proliferation are influenced by both physiological processes, such as aging, and pathological processes in the body such as obesity or malnutrition. The analysis of literary sources was carried out on the databases of electronic libraries of scientific publications: PubMed, Google Academy, Elibrary.ru. The search was performed using the following Key words: fibroblasts, proliferation, aging, obesity, lack of nutrients. To date, the regenerative potential of fibroblasts contained in the oral mucosa in the context of the problem of aging, as well as in cases of eating disorders, is an extensive topic for further scientific research with the prospect of practical application of the knowledge gained. The analysis of literary sources was carried out on the databases of electronic libraries of scientific publications: PubMed, Google Academy, Elibrary.ru. The search was conducted using the following Key words: fibroblasts, proliferation, aging, obesity, lack of nutrients. To date, the regenerative potential of fibroblasts of the oral mucosa in the aspect of aging and nutritional status disorders is an extensive topic for further scientific research with the prospect of practical application of the knowledge gained.
References
- Gunin А.G., Golubtsova N.N.Transformiruyushchii faktor rosta -β (TGF-β) v kozhe cheloveka vprotsesse stareniya [Transforming growth factor-β (TGF-β) in human skin during aging]. Uspekhi gerontologii, 2019, no. 32(1-2), pp. 12–19.
- Shmakova T.V., Kananykhina E.Yu., Bol’shakova G.B. Kletochnye mekhanizmy bezrubtsovogo zazhivleniya kozhi mlekopitayushchikh [Cellularmechanismsofscarlesshealingofthemammalsskin].Klinicheskaya i eksperimental’nayamorfologiya, 2019, no. 8(2),pp. 5–11.DOI:10.31088/2226-5988-2019-30-2-5-11.
- Alexakou E., Bakopoulou A., Apatzidou D.A. et al. Biological Effects of “Inflammageing” onHuman Oral Cells: Insights into a Potential Confounder of Age‑Related Diseases. Mol Sci., 2023, vol. 25(1), p. 5. DOI: 10.3390/ijms25010005.
- Algra Y., Haverkort E., Kok W. et al. The Association between Malnutrition and Oral Health in Older People: A Systematic Review. Nutrients, 2021, vol. 13(10), 3584. DOI: 10.3390/nu13103584.
- Atkuru S., Muniraj G., Sudhaharan T. et al. Cellular ageing of oral fibroblasts differentially modulates extracellular matrix organization. Periodontal Res., 2021, vol. 56(1), pp. 108–120. DOI: 10.1111/jre.12799.
- Azzolino D., Passarelli P.C., De Angelis P. et al. Poor Oral Health as a Determinant of Malnutrition and Sarcopenia. Nutrients, 2019, vol. 11(12), 2898. DOI: 10.3390/nu11122898.
- Băbțan A.M., Vesa Ș.C., Boșca B.A. et al. High-Frequency Ultrasound Assessment of Skin and Oral Mucosa in Metabolic Syndrome Patients-A Cross-Sectional Study. Clin Med., 2021, vol. 10(19), 4461. DOI: 10.3390/jcm10194461.
- Badi I. The curious case of dermal fibroblasts: cell identity loss may be a mechanism underlying cardiovascular aging. Cardiovasc Res., 2019, vol. 115(3), pp. 24-DOI: 10.1093/cvr/cvz012.
- Bagio D.A., Lestari N.A., Putra W.A. et al. The effect of hyaluronic acid conditioned media onhDPSCs differentiation through CD44 and transforming growth factor-β1 expressions. Adv Pharm Technol Res., 2023, vol. 14(2), pp. 89-93. DOI: 10.4103/japtr.japtr_649_22.
- Barchitta M., Maugeri A., Favara G. et al. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Mol Sci., 2019, vol. 20(5), 1119. DOI: 10.3390/ijms20051119.
- Benahmed A., Gasmi A., Doşa A. et al. Association between the gut and oral microbiome with obesity. Anaerobe, 2021, vol. 70, 102248. DOI: 10.1016/j.anaerobe.2020.102248.
- Bhoopathi V., Wells C., Ramos-Gomez F. et al. Difficulty with Oral Health Complications inAdolescents with Developmental Disability and Obesity. JDR Clin Trans Res, 2023, vol. 8(3), 276–286. DOI: 10.1177/23800844221090447.
- Brizuela M., Winters R. Histology, Oral Mucosa. StatPearls Publishing, 2023, Available at: https://www.ncbi.nlm.nih.gov/books/NBK572115.
- Bryja A., Latosiński G., Jankowski M. et al. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel), 2020, vol. 11(1), p. DOI: 10.3390/ani11010015.
- Bryja A., Sujka-Kordowska P., Konwerska A. et al. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals (Basel), 2020, vol.10(11), 1938. DOI: 10.3390/ani10111938.
- Chen S.D., Chu C.Y., Wang C.B. et al. Integrated-omics profiling unveils the disparities of host defense to ECM scaffolds during wound healing in aged individuals. Biomaterials, 2024, vol. 311, 122685. DOI: 10.1016/j.biomaterials.2024.122685.
- Chen Y., Huang X., Liu A. et al. Lactobacillus Reuteri Vesicles Regulate Mitochondrial Function of Macrophages to Promote Mucosal and Cutaneous Wound Healing. Adv Sci (Weinh), 2024, vol. 11(24), e2309725. DOI: 10.1002/advs.202309725.
- Choi J.J.E., Zwirner J., Ramani R.S. et al. Mechanical properties of human oral mucosa tissues are site dependent: A combined biomechanical, histological and ultrastructural approach. Clin Exp Dent Res., 2020, vol. 6(6), pp. 602- DOI: 10.1002/cre2.305.
- Cialdai F., Risaliti C., Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol., 2022, vol. 10, 958381. DOI: 10.3389/fbioe.2022.958381.
- de Sire A., Ferrillo M., Lippi L. et al. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty inElderly: A Comprehensive Review. Nutrients, 2022, vol. 14(5), 982. DOI: 10.3390/nu14050982.
- Farah H., Wijesinghe S.N., Nicholson T. et al. Metabotypes in Synovial Fibroblasts and Synovial Fluid in Hip Osteoarthritis Patients Support Inflammatory Responses. Mol Sci., 2022, vol. 23(6), 3266. DOI: 10.3390/ijms23063266.
- Farooq M., Khan A.W., Kim M.S. et al. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells, 2021, vol. 10(11), 3242. DOI: 10.3390/cells10113242.
- Furukawa M., Matsuda K., Aoki Y. et al. Analysis of senescence in gingival tissues and gingival fibroblast cultures. Clin Exp Dent Res., 2022, vol. 8(4), pp. 939- DOI: 10.1002/cre2.581.
- Gaffen S.L., Moutsopoulos N.M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol., 2020, vol. 5(43), eaau4594. DOI: 10.1126/sciimmunol.aau4594.
- Gomes R.N., Manuel F.,Nascimento D.S. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med., 2021, vol. 6(1), p. 43. DOI: 10.1038/s41536-021-00153-z.
- Gupta S., Jawanda M.K. Oral submucous fibrosis: An overview of a challenging entity. Indian Dermatol Venereol Leprol., 2021, vol. 87(6), pp. 768-777. DOI: 10.25259/IJDVL_371_20.
- Henning R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: areview of the pathophysiology and treatment of obesity. Cardiovasc Dis., 2021, vol. 11(4), pp. 504-529.
- Jang J.H., Sung J.H., Huh J.Y. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw., 2025, vol. 25(1), p. 12. DOI: 10.4110/in.2025.25.e12.
- Kai-Yi Li, Chun-Lei Li, Hong Hua et al. Potential relationship of dyslipidemia with dietary patterns inoral lichen planus patients-A case-control study. Journal of Dental Sciences, 2023, vol. 18, pp. 1638-1644. DOI: 10.1016/j.jds.2023.01.006.
- Kang Y., Yang R., Wei Z. et al. Phenytoin sodium-ameliorated gingival fibroblast aging is associated with autophagy. Periodontal Res., 2020, vol. 55(5), pp. 642-650. DOI: 10.1111/jre.12750.
- Kesserwani G.W., de Oliveira N.C., de Oliveira T.C. et al. The potential impact of vegetarian diet on the oral mucosa: A preliminary cytopathological study. Formos Med Assoc., 2022, vol. 121(4), pp. 824-831. DOI: 10.1016/j.jfma.2021.08.028.
- Ko K.I., DerGarabedian B.P., Chen Z. et al. Distinct fibroblast progenitor subpopulation expedites regenerative mucosal healing by immunomodulation. Exp Med., 2023, vol. 220(3), e20221350. DOI: 10.1084/jem.20221350.
- Kruszewska J., Cudnoch-Jedrzejewska A., Czarzasta K. Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity-Pathogenesis and Involvement of the Extracellular Matrix. Mol Sci., 2022, vol. 23(8), 4195. DOI: 10.3390/ijms23084195.
- LeBleu V.S., Neilson E.G. Origin and functional heterogeneity of fibroblasts. FASEB, 2020, vol. 34(3), pp. 3519‑3536. DOI: 10.1096/fj.201903188R.
- Li X., Li N., Wang Y. Et al. Research Progress of Fibroblasts in Human Biomolecules, 2024, vol. 14(11), 1478. DOI: 10.3390/biom14111478.
- Liu J., Li F., Liu B. et al. Adipose-derived mesenchymal stem cell exosomes inhibit transforming growth factor-β1-induced collagen synthesis in oral mucosal fibroblasts. Exp Ther Med., 2021, vol. 22(6), 1419. DOI: 10.3892/etm.2021.10854.
- Liu X., Teng Y., Li H. et al. Identification of IGF2 promotes skin wound healing by co-expression analysis. Wound, 2024, vol. 21(4), e14862. DOI: 10.1111/iwj.14862.
- Marconi G.D., Fonticoli L., Rajan T.S. et al. Transforming Growth Factor-Beta1 and Human Gingival Fibroblast-to-Myofibroblast Differentiation: Molecular and Morphological Modifications. Front Physiol., 2021, vol. 12, 676512. DOI: 10.3389/fphys.2021.676512.
- Martu M.A., Maftei G.A., Luchian I. et al. Wound healing of periodontal and oral tissues: Part II–Patho-phisiological conditions and metabolic diseases. Oral Rehabil., 2020,vol. 12(4), pp. 30-40.
- Memmert S., Damanaki A., Nogueira A.V.B. et al. Regulation of tyrosine hydroxylase inperiodontal fibroblasts and tissues by obesity-associated stimuli. Cell Tissue Res., 2019, vol. 375(3), pp. 619- DOI: 10.1007/s00441-018-2941-8.
- Meng Z., Yang T., Liu D.Type-2 epithelial-mesenchymal transition in oral mucosal nonneoplastic diseases. Front Immunol., 2022, vol. 13, 1020768. DOI: 10.3389/fimmu.2022.1020768.
- Mycielska M.E., James E.N., Parkinson E.K. Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. J Mol Sci., 2022, vol. 23(7), 3652. DOI: 10.3390/ijms23073652.
- Nanus D.E., Wijesinghe S.N., Pearson M.J. et al. Regulation of the Inflammatory Synovial Fibroblast Phenotype by Metastasis-Associated Lung Adenocarcinoma Transcript 1 Long Noncoding RNA in Obese Patients With Osteoarthritis. Arthritis Rheumatol., 2020, vol. 72(4), pp. 609- DOI: 10.1002/art.41158.
- Negrini T.C., Carlos I.Z., Duque C. et al. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. Front Oral Health, 2021, vol. 2, 697428. DOI: 10.3389/froh.2021.697428.
- Nikoloudaki G., Creber K., Hamilton D.W. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Physiol Cell Physiol., 2020, vol. 318(6), pp. 1065-1077. DOI: 10.1152/ajpcell.00035.2020.
- Nikoloudaki G., Hamilton D.W. Assessing the fate and contribution of Foxd1-expressing embryonic precursors and their progeny in palatal development, homeostasis and excisional repair. Sci Rep., 2024, vol. 14(1), 4969. DOI: 10.1038/s41598-024-55486-8.
- Páez J., Hernández R., Espinoza J. et al. Uncoupled inflammatory, proliferative, and cytoskeletal responses in senescent human gingival fibroblasts. Periodontal Res., 2020, vol. 55(3), pp.432-440. DOI: 10.1111/jre.12727.
- Patini R., Favetti Giaquinto E., Gioco G. et al. Malnutrition as a Risk Factor in the Development of Oral Cancer: A Systematic Literature Review and Meta-Analyses. Nutrients, 2024, vol. 16(3), p. 360. DOI: 10.3390/nu16030360.
- Pereira D., Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol., 2021, vol. 9, 682143. DOI:3389/fcell.2021.682143.
- Pérez-González A., Suárez-Quintanilla J.A., Otero-Rey E. et al. Association between xerostomia, oral and general health, and obesity in adults. A cross-sectional pilot study. Med Oral Patol Oral Cir Bucal., 2021, vol. 26(6), pp. 762- DOI: 10.4317/medoral.24731.
- Plikus M.V., Wang X., Sinha S. et al. Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 2021, vol. 184(15), pp. 3852–3872. DOI: 10.1016/j.cell.2021.06.024.
- Ravishankar B., Madhavi B.V., Kalagara A. et al. Clinical and pathological correlation of P53 expression in oral cancers. Pathol Res Pract., 2024, vol. 253, 155071. DOI: 10.1016/j.prp.2023.155071.
- Rujirachotiwat A., Suttamanatwong S. Curcumin Promotes Collagen Type I, Keratinocyte Growth Factor-1, and Epidermal Growth Factor Receptor Expressions in the In Vitro Wound Healing Model of Human Gingival Fibroblasts. Dent., 2021, vol. 15(1), pp. 63-70. DOI: 10.1055/s-0040-1715781.
- Salminen A. The plasticity of fibroblasts: A forgotten player in the aging process. Ageing Res Rev., 2023, vol. 89, 101995. DOI: 10.1016/j.arr.2023.101995.
- Şenel S. An Overview of Physical, Microbiological and Immune Barriers of Oral Mucosa. Mol Sci., 2021, vol. 22(15), 7821. DOI: 10.3390/ijms22157821.
- Serrano-Lopez R., Morandini A.C. Fibroblasts at the curtain call: from ensemble to principal dancers in immunometabolism and inflammaging. Appl Oral Sci., 2023, vol. 31, e20230050. DOI: 10.1590/1678-7757-2023-0050.
- Taghat N., Lingström P., Mossberg K. et al. Oral health by obesity classification in young obese women – a cross-sectional study. Acta Odontol Scand., 2022, vol. 80(8), pp. 596- DOI: 10.1080/00016357.2022.2063942.
- Takaya K., Asou T., Kishi K. Aging Fibroblasts Adversely Affect Extracellular Matrix Formation via the Senescent Humoral Factor Ependymin-Related Protein 1. Cells, 2022, vol. 11(23), 3749. DOI: 10.3390/cells11233749.
- Talbott H.E., Mascharak S., Griffin M. et al. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell, 2022, vol. 29(8), pp. 1161-1180. DOI: 10.1016/j.stem.2022.07.006.
- Toma A.I., Fuller J.M., Willett N.J. et al. Oral wound healing models and emerging regenerative therapies. Transl Res., 2021, vol. 236, pp. 17- DOI: 10.1016/j.trsl.2021.06.003.
- Tôrres L.H.N., De Marchi R.J., Hilgert J.B. et al. Oral health and Obesity in Brazilian elders: Alongitudinal study. Community Dent Oral Epidemiol., 2020, vol. 48(6), pp. 540- DOI: 10.1111/cdoe.12566.
- Tuleta I., Hanna A., Humeres C. et al. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res., 2024, vol. 120(16), pp.2047- DOI: 10.1093/cvr/cvae210.
- Waasdorp M., Krom B.P., Bikker F.J. et al. The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules, 2021, vol. 11(8), 1165. DOI: 10.3390/biom11081165.
- Wang J., You J., Gong D. et al. PDGF-BB induces conversion, proliferation, migration, and collagen synthesis of oral mucosal fibroblasts through PDGFR-β/PI3K/ AKT signaling pathway. Cancer Biomark, 2021, vol. 30(4), pp. 407- DOI: 10.3233/CBM-201681.
- Wen D., Zhang H., Zhou Y. et al. MicroRNA-503 Suppresses Oral Mucosal Fibroblast Differentiation by Regulating RAS/RAF/MEK/ERK Signaling Pathway. Biomolecules, 2024, vol. 14(10), 1259. DOI: 10.3390/biom14101259.
- Wertz P.W. Roles of Lipids in the Permeability Barriers of Skin and Oral Mucosa. J. Mol Sci., 2021, vol. 22(10), 5229. DOI: 10.3390/ijms22105229.
- Williams D.W.,Greenwell-Wild T., Brenchley L. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell, 2021, vol. 184(15), pp. 4090- DOI: 10.1016/j.cell.2021.05.013.
- Wlaschek M., Maity P., Makrantonaki E. et al. Connective Tissue and Fibroblast Senescence in Skin Aging. Invest Dermatol., 2021, vol. 141(4S), pp. 985-992. DOI: 10.1016/j.jid.2020.11.010.
- Yamane T., Shimura M., Konno R. et al. Wound fluid of rats fed protein-free diets delays wound healing through the suppression of the IGF-1/ERK(1/2) signaling pathway. Mol Cell Biochem., 2019, vol.452(1-2), pp. 177- DOI: 10.1007/s11010-018-3423-8.
- Zhang J., Yu H., Man M.Q. et al. Aging in the dermis: Fibroblast senescence and its significance. Aging Cell, 2024, vol. 23(2), e14054. DOI: 10.1111/acel.14054.
- Zhang L.J., Guerrero-Juarez C.F., Chen S.X. et al. Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci Transl Med., 2021, vol. 13(577), eabb5280. DOI: 10.1126/scitranslmed.abb5280.
- Zou Z., Long X., Zhao Q. et al. A Single-Cell Transcriptomic Atlas of Human Skin Aging. Dev Cell., 2021, vol. 56(3), pp. 383-e8. DOI: 10.1016/j.devcel.2020.11.002.
About authors
- Matveeva Mariya D.
- Senior Lecturer, Department of Orthopedic Dentistry and Orthodontics, Chuvash State University, Russia, Cheboksary (masha_matveyeva@inbox.ru; ORCID: https://orcid.org/0009-0006-6516-4585)
- Golubtsova Natalya N.
- Doctor of Biological Sciences, Associate Professor, Head of the Department of General and Clinical Morphology and Forensic Medicine, Chuvash State University, Russia, Cheboksary (golubnata@list.ru; ORCID: https://orcid.org/0000-0002-5436-1333)
Article link
Matveeva M.D., Golubtsova N.N. Features of proliferative activity of fibroblasts in the oral mucosa depending on body weight and age in humans are shown [Electronic resource] // Acta medica Eurasica. – 2025. – №3. P. 55-67. – URL: https://acta-medica-eurasica.ru/en/single/2025/3/7/. DOI: 10.47026/2413-4864-2025-3-55-67.