Single article

DOI: 10.47026/2413-4864-2025-1-80-91

Kalinina O.V., Stepanova I.P.

Development, structure and regulation of sebaceous glands at present stage (literature review)

Keywords: skin, sebaceous glands, sebocytes, ontogenesis, androgens

This article provides a literature review on the development and regulation of sebaceous glands, which have been actively studied in recent decades. Research is carried out on biological material, laboratory animals, cell and tissue cultures. Recent advances in diagnostic techniques, the use of immunocytochemical research methods and immunofluorescence markers have expanded the opportunities for studying the skin. The purpose of the review is to systematize information about human sebaceous glands according to domestic and foreign sources using modern research methods. This article provides information on the development, structure and regulation of human sebaceous glands, which are among the most important skin derivatives and have a unique holocrine type of secretion. They secrete sebum, which forms a water-lipid mantle on the surface of the epidermis. The development of sebaceous glands begins on the 13th–16th week of embryogenesis and occurs in parallel with the development of hair follicles and epidermis. Their activities are controlled by various factors. These are genetic predisposition and environmental factors, hormones and non-hormonal factors, neuropeptides, and pharmacological agents that affect sebum production. The analysis of literary sources was carried out in PubMed and eLibrary.RU databases, CyberLeninka, which are large aggregators of scientific publications around the world. At the request "sebaceous gland", 10,967 publications were received. For a deeper study, 51 publications from various domestic and foreign scientific publications were selected. Scientific reviews and original studies have been reviewed, which present the results of studying sebaceous glands. Currently, there is a growing interest in studying various skin structures, especially sebaceous glands, which are involved in regeneration, aging processes, neurotransmitter interactions, transformations of hormones and neuropeptides and perform complex neuroendocrine and immunological functions.

References

  1. Kalinina O.V., Belousova T.A., Nozdrin V.I. Vozrastnye osobennosti sal’nykh zhelez kozhi volosistoi chasti visochnoi oblasti golovy lyudei muzhskogo pola [Age-related features of the sebaceous glands of the scalp of the temporal region of the head in males]. Morfologiya, 2013, no. 143(2), pp. 69–74. DOI:10.17816/morph.398632.
  2. Myadelets O.D., Adaskevich V.P. Morfofunktsional’naya dermatologiya [Morphofunctional dermatology]. Мoscow, Medlit Publ., 2006, 752 p.
  3. Nozdrin V.I., Barashkova S.A., Semchenko V.V. Kozha i ee proizvodnye [Skin and its derivatives]. Omsk-Orel, 2005, 192 p.
  4. Azmahani A., Nakamura Y., Felizola S.J. et al. Steroidogenic enzymes, their re-lated transcription factors and nuclear receptors in human sebaceous glands under normal and pathological conditions. Steroid. Biochem. Mol. Biol., 2014, vol. 144, pp. 268–279. DOI: 10.1016/j.jsbmb.2014.07.010.
  5. Barrault C., Garnier J., Pedretti N. et al. Androgens induce sebaceous differentiation in sebocyte cells expressing a stable functional androgen receptor. Steroid. Biochem. Mol. Biol., 2015, vol. 152, pp. 34–44. DOI: 10.1016/j.jsbmb.2015.04.005.
  6. Blanpain C., Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science, 2014, vol. 344(6189), pp. 1242281. DOI: 10.1126/science.1242281.
  7. Butovich I.A. Meibomian glands, meibum, and meibogenesis. Eye Res., 2017, vol. 163, pp. 2–16. DOI: 10.1016/j.exer.2017.06.020.
  8. Chen W., Yang C.C., Sheu H.M. et al. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. Invest. Dermatol., 2003, vol. 121(3), pp. 441–447. DOI: 10.1046/j.1523-1747.2003.12411.x.
  9. Clayton R.W., Langan E.A., Ansell D.M. et al. Neuroendocrinology and neurobiology of sebaceous glands. Rev. Camb. Philos. Soc., 2020, vol. 95(3), pp. 592–624. DOI: 10.1111/brv.12579.
  10. Сottle D.L., Kretzschmar K., Schweiger P.J. et al. c-Myc-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Rep., 2013, vol. 3(2), pp. 427–441. DOI: 10.1016/j.celrep.2013.01.013.
  11. Dahlhoff M., Camera E., Schafer M. et al. Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis and ocular integrity in mice. Development, 2016, vol. 143(10), pp. 1823–1831. DOI: 10.1242/dev.132753.
  12. Deplewski D., Rosenfield R.L. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology, 1999, vol. 140(9), pp. 4089–4094. DOI: 10.1210/endo.140.9.6957.
  13. Dobrosi N., Toth B.I., Nagy G. et al. Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. Faseb J., 2008, vol. 22(10), pp. 3685–3695. DOI: 10.1096/fj.07-104877.
  14. Dozsa A., Dezso B., Toth B.I. et al. PPARgamma-mediated and arachidonic ac-id-dependent signaling is involved in differentiation and lipid production of human sebocytes. Invest. Dermatol., 2014, vol. 134(4), pp. 910–920. DOI: 10.1038/jid.2013.413.
  15. Ekanayake-Mudiyanselage S., Thiele J. Sebaceous glands as transporters of vitamin E. Hautarzt, 2006, vol. 57(4), pp. 291–296. DOI: 10.1007/s00105-005-1090-7.
  16. Fritsch M., Orfanos C.E., Zouboulis C.C. Sebocytes are the key regulators of androgen homeostasis in human skin. Invest. Dermatol., 2001, vol. 116(5), pp. 793–800. DOI: 10.1046/j.1523-1747.2001.01312.x.
  17. Geueke A., Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Dermatol., 2021, vol. 30(4), pp. 588–597. DOI: 10.1111/exd.14303.10.1111/exd.14303.
  18. Hou X., Wei Z., Zouboulis C.C. et al. Aging in the sebaceous gland. Cell. Dev. Biol., 2022, vol. 10, 909694. DOI: 10.3389/fcell.2022.909694.
  19. Kramer C., Seltmann H., Seifert M. et al. Characterization of the vitamin D endocrine system in human sebocytes in vitro. Steroid. Biochem. Mol. Biol., 2009, vol. 113(1-2), pp. 9–16. DOI: 10.1016/j.jsbmb.2008.10.010.
  20. Krause K., Schnitger A., Fimmel S. et al. Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands. Metab. Res., 2007, vol. 39(2), pp. 166–170. DOI: 10.1055/s-2007-961811.
  21. Lovaszi M., Mattii M., Eyerich K. et al. Sebum lipids influence macrophage polarization and activation. J. Dermatol., 2017, vol. 177(6), pp. 1671–1682. DOI: 10.1111/bjd.15754.
  22. Makrantonaki E., Ganceviciene R., Zouboulis C. An update on the role of the sebaceous gland in the pathogenesis of acne. , 2011, vol. 3(1), pp. 41–49. DOI: 10.4161/derm.3.1.13900.
  23. Morris R.J., Liu Y., Marles L. et al. Capturing and profiling adult hair follicle stem cells. Biotechnol., 2004, vol. 22(4), pp. 411–417. DOI: 10.1038/nbt950.
  24. Okoro E.O., Camera E., Flori E., Ottaviani M. Insulin and the sebaceous gland function. Front Physiol., 2023, vol. 14, 1252972. DOI: 10.3389/fphys.2023.12529.
  25. Nakatsuji T., Kao M.C., Zhang L. et al. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. Invest. Dermatol., 2010, vol. 130(4), pp. 985–994. DOI: 10.1038/jid.2009.384.
  26. Niemann C. Differentiation of the sebaceous gland. , 2009, vol. 1(2), pp. 64–67. DOI: 10.4161/derm.1.2.8486.
  27. Panteleyev A.A., Rosenbach T., Paus R., Christiano A.M. The bulge is the source of cellular renewal in the sebaceous gland of mouse skin. Dermatol. Res., 2000; vol. 292(11), pp. 573–576. DOI: 10.1007/s004030000182.
  28. Picardo M., Ottaviani M., Camera E., Mastrofrancesco A. Sebaceous gland lipids. , 2009, vol. 1(2), pp. 68–71. DOI: 10.4161/derm.1.2.8472.
  29. Plewig G., Kligman A.M. Proliferative activity of the sebaceous glands of the aged. Invest. Dermatol., 1978, vol. 70(6), pp. 314–317. DOI: 10.1111/1523-1747.ep12543478.
  30. Pochi P.E., Strauss J.S., Downing D.T. Age-related changes in sebaceous gland activity. Invest. Dermatol., 1979, vol. 73(1), pp. 108–111. DOI: 10.1111/1523-1747.ep12532792.
  31. Rosignoli C., Nicolas J.C., Jomard A. et al. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo. Dermatol., 2003, vol. 12(4), pp. 480–489. DOI: 10.1034/j.1600-0625.2003.00014.x.
  32. Russell L.E., Harrison W.J., Bahta A.W. et al. Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit. Dermatol., 2007, vol. 16(10), pp. 844–852. DOI: 10.1111/j.1600-0625.2007.00612.x.
  33. Saxena N., Mok K.W., Rendl M. An updated classification of hair follicle morphogenesis. Dermatol., vol. 28 (4), pp. 332–344. DOI: 10.1111/exd.13913.
  34. Schepeler T., Page M.E., Jensen K.B. Heterogeneity and plasticity of epidermal stem cells. Development, 2014, vol. 141(13), pp. 2559–2567. DOI: 10.1242/dev.104588.
  35. Schmidt-Ullrich R., Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays, 2005, vol. 27(3), pp. 247–261. DOI: 10.1002/bies.20184.
  36. Sennett R., Wang Z., Rezza A. et al. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Cell., 2015, vol. 34(5), pp. 577–591. DOI: 10.1016/j.devcel.2015.06.023.
  37. Shamloul G., Khachemoune A. An updated review of the sebaceous gland and its role in health and diseases Part 1: Embryology, evolution, structure, and function of sebaceous glands. Therapy, 2021, vol. 34(1), e14695. DOI: 10.1111/dth.14695.
  38. Stoffel W., Schmidt-Soltau I., Jenke B. et al. Hair growth cycle is arrested in SCD1 deficiency by impaired Wnt3a-Palmitoleoylation and retrieved by the artificial lipid barrier. Invest. Dermatol., 2017, vol. 137(7), pp. 1424–1433. DOI: 10.1016/j.jid.2017.02.973.
  39. Taylor G., Lehrer M.S., Jensen P.J. et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. , 2000, vol. 102(4), pp. 451–461. DOI: 10.1016/s0092-8674(00)00050-7.
  40. Tóth B.I., Oláh A., Szöllősi A.G. et al. «Sebocytes’ makeup» – Novel mecha-nisms and concepts in the physiology of the human sebaceous glands. Arch., 2011, vol. 461(6), pp. 593–606. DOI: 10.1007/s00424-011-0941-6.
  41. Toyoda M., Nakamura M., Makino T. et al. Sebaceous glands in acne patients express high levels of neutral endopeptidase. Dermatol., 2002, vol. 1190(3), pp. 241–247. DOI: 10.1034/j.1600-0625.2002.110307.x.
  42. Toyoda M., Nakamura M., Morohashi M. Neuropeptides and sebaceous glands. J. Dermatol., 2002, vol. 12(2), pp. 422–427.
  43. Tsukada M., Schroder M., Roos T.C. et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. Invest. Dermatol., 2000, vol. 115(2), pp. 321–327. DOI: 10.1046/j.1523-1747.2000.00066.x.
  44. Tumbar T., Guasch G., Greco V. Defining the epithelial stem cell niche in skin. Science, 2004, vol. 303(5656), pp. 359–363. DOI: 10.1126/science.1092436.
  45. Wang X., His T.C., Guerrero-Juarez C.F. et al. Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. Regeneration (Oxf), 2015, vol. 2(4), pp. 169–181. DOI: 10.1002/reg2.38.
  46. Zhang L., Li W.H., Anthonavage M. et al. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides, 2006, vol. 27(2), pp. 413–420. DOI: 10.1016/j.peptides.2005.05.030.
  47. Zouboulis C.C. Sebaceous gland receptors. , 2009, vol. 1(2), pp. 77–80. DOI: 10.4161/derm.1.2.7804.
  48. Zouboulis C. C., Adjaye J., Akamatsu H. et al. Human skin stem cells and the ageing process. Gerontol., 2008, vol. 43(11), pp. 986–997. DOI: 10.1016/j.exger.2008.09.001.
  49. Zouboulis C.C., Coenye T., He L. et al. Sebaceous immunobiology – skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Immunol., 2022, vol. 13, 1029818. DOI: 10.3389/fimmu.2022.1029818.
  50. Zouboulis C.C., Seltmann H., Hiroi N. et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Natl. Acad. Sci. U S A, 2002, vol. 99(10), pp. 7148–7153. DOI: 10.1073/pnas.102180999.
  51. Zouboulis C.C., Picardo M., Ju Q. et al. Beyond acne: Current aspects of sebaceous gland biology and function. Endocr. Metab. Disord., 2016, vol. 17(3), pp. 319–334. DOI: 10.1007/s11154-016-9389-5.

About authors

Kalinina Olesya V.
Candidate of Medical Sciences, Associate Professor, Department of Histology, Cytology, Embryology, Smolensk State Medical University, Russia, Smolensk (olesya.kalinina577@yandex.ru; ORCID: https://orcid.org/0000-0002-1051-4385)
Stepanova Irina P.
Doctor of Medical Sciences, Professor, Head of the Department of Histology, Cytology, Embryology, Smolensk State Medical University, Russia, Smolensk (stepanova100@yandex.ru; )

Article link

Kalinina O.V., Stepanova I.P. Development, structure and regulation of sebaceous glands at present stage (literature review) [Electronic resource] // Acta medica Eurasica. – 2025. – №1. P. 80-91. – URL: https://acta-medica-eurasica.ru/en/single/2025/1/11/. DOI: 10.47026/2413-4864-2025-1-80-91.