Single article

DOI: 10.47026/2413-4864-2023-1-147-159

Timofeeva N.Yu., Bubnova N.V., Samakina E.S., Stomenskaya I.S., Kostrova O.Yu., Struchko G.Yu., Kotelkina A.A.

The Role of Mast Cells in Carcinogenesis (Literature Review)

Keywords: mast cells, carcinogenesis, cancer, tryptase, degranulation index, biogenic amines

Mast cells are an important link in the immune system. They are involved in many pathological processes such as stress, inflammation, autoimmune processes and carcinogenesis. The purpose of the review is to summarize the data on the role of mast cells in carcinogenesis. Materials and methods. Review of available literature sources published in Elibrary and PubMed. Results. Tumor growth in the body is accompanied by immune system dysfunction and mast cell response. Mast cells are able to stimulate tumour growth through the secretion of proteases, angiogenic and growth factors, and at the same time have a tumour suppressive effect. The response of the mast cell population depends on the type of tissue from which the tumor is developing, the speed and stage of the process, the localization of the mast cells, and the combination of pro- and anti-tumor factors. During tumour development and growth, total degranulation of mast cells occurs. In addition, mast cells in normal and tumor tissue differ in structure. This article provides information on the role of mast cells in carcinogenesis. Conclusion. Thus, mast cells on the one hand positively affect tumor growth through the synthesis of proteases, growth and angiogenic factors, and on the other hand, act as inhibitors of malignant growth. The response of mastocytes directly depends on the tissue in which tumour develops, on its type and degree of malignancy, the stage of pathological process, localization of mast cells and the degree of their activation, as well as the total balance of pro- and antitumour effects.

References

  1. Artashyan O.S., Yushkov B.G., Khramtsova Yu.S. Morfologicheskie aspekty uchastiya tuchnykh kletok v formirovanii obshchego adaptatsionnogo sindroma [Morphological aspects of the mast cells participation in the formation of common adaptation syndrome]. Tavricheskii mediko-biologicheskii vestnik, 2012, vol. 15 (3-1), pp. 22–25.
  2. Bykov B. L. Razvitie i geterogennost’ tuchnykh kletok [Development and heterogenety of mast cells]. Morfologiya, 2000, vol. 117, pp. 86–92.
  3. Bykov B.L. Sekretornye mekhanizmy i sekretornye produkty tuchnykh kletok [Secretory mechanisms and secretory products of mast cells]. Morfologiya, 1999, vol. 115, pp. 64–72.
  4. Gerval’d V.Ya., Cherdantseva T.M., Bobrov I.P., Avdalyan A.M. Kliniko-morfologicheskie sopostavleniya i prognosticheskoe znachenie issledovaniya morfofunktsional’noi aktivnosti tuchnykh kletok peritumoroznoi zony raka pochki [Clinical and morphological comparisons and prognostic significance of the study of mast cells morphofunctional activity in the peritumorous zone of kidney cancer]. Sibirskii onkologicheskii zhurnal, 2011, App. no. 1, pp. 33–34.
  5. Golofeevskii V.Yu., Shcherbak S.G. Sochetannaya okraska gistologicheskikh srezov osnovnym korichnevym i prochnym zelenym [Combined staining of histological sections with basic brown and solid green]. Arkhiv anatomii, gistologii i ehmbriologii, 1987, no. 4, pp. 101–102.
  6. Gordon B.M. Tsitobioaminnaya sistema timusa i adaptatsiya [Cytobioamine system of the thymus and adaptation]. Cheboksary, Chuvash University Publ., 2000, 237 p.
  7. Gordon D.S. Tinktorial’nye paralleli tuchnykh kletok [Tinctorial parallels of mast cells]. Makro-mikrostruktura tkanei v norme, patologii i ehksperimente: mezhvuz. sb. [Macro-microstructure of tissues in norm, pathology and experiment: interuniversity collection of papers]. Cheboksary, Chuvash University Publ., 1981, pp. 97–101.
  8. Gordon D.S. Tuchnye kletki v ehksperimente [Mast cells in the experiment]. Cheboksary, Chuvash University Publ., 1980, 120 p.
  9. Gordon D.S., Sergeeva V.E., Zelenova I.G. Neiromediatory limfoidnykh organov [Neurotransmitters of lymphoid organs]. Leningrad, Nauka Publ., 1982, 129 p.
  10. Dzodzikova M.EH. Morfologicheskie izmeneniya v sisteme tuchnykh kletok u krys v protsesse razvitiya raka molochnoi zhelezy v ehksperimente [Morphological changes in the mast cell system in rats during the development of breast cancer in the experiment]. Vestnik RUDN, 2004, no. 3(27), pp. 95–96.
  11. Zibirov R.F., Mozerov S.A. Kharakteristika kletochnogo mikrookruzheniya opukholi [Сharacterization of the tumor cell microenvironment]. Zhurnal im. P. A. Gertsena, 2018, vol. 7(2), pp. 67-72.
  12. Bobrov I.P., Cherdantseva T.M., Kryuchkova N.G. et al. Intratumoral’nye tuchnye kletki pri pochechno-kletochnom rake: kliniko-morfologicheskie sopostavleniya [Intratumoral mast cells by renal cell carcinoma: clinico-morphological correlations]. Byulleten’ meditsinskoi nauki, 2018, vol. 10(2), pp. 32–36.
  13. Gordova V.S., Shatskikh O.A., Smirnova T.L. et al. K voprosu o kharakteristike tuchnokletochnoi populyatsii pri pereraspredelenii gistamina v limfoidnykh organakh laboratornykh zhivotnykh [On the question of the mast cell population characteristics the redistribution of histamine in the lymphoid organs of laboratory animals]. Allergologiya i immunologiya, 2013, vol. 14(3), p. 191.
  14. Kotelkina A.A., Kostrova O.Yu., Merkulova L.M. at el.Kletochnyi sostav timusa krys pri sochetannom vozdeistvii kantserogena i stressa [Cellular composition of rat thymus with combined effects of carcinogen and stress]. Zhurnal anatomii i gistopatologii, 2019, vol. 8(2), pp. 47–54.
  15. Kondashevskaya M.V. Tuchnye kletki i geparin – klyuchevye zven’ya v adaptivnykh i patologicheskikh protsessakh [Mast cells and heparin are key links in adaptive and pathological processes]. Vestnik RAMN, 2010, no. 6, pp. 49–54.
  16. Kostrova O.Yu. Aktsidental’naya involyutsiya timusa krys na fone razvitiya adenokartsinomy tolstoi kishki, vyzvannoi vvedeniem kantserogena v razlichnoi dozirovke [Accidental involution of the rat thymus against the background of the development of colon adenocarcinoma caused by the introduction of a carcinogen in different dosages]. Fundamental’nye issledovaniya, 2013, no. 3, pp. 321–324.
  17. Kotelkina A.A., Merkulova L.M., Kostrova O.Yu. Reaktsiya tuchnykh kletok timusa na kantserogenez, vodnoimmobilizatsionnyi stress i sochetannoe deistvie faktorov [The reaction of the fat cells of the thymus in carcinogenesis, waterimmobilization stress and the combined action of factors]. In: Sbornik nauchnykh rabot, posvyashchennyi 85-letiyu so dnya rozhdeniya professora A.S. Leontyuka “Stroenie organizma cheloveka i zhivotnykh v norme, patologii i ehksperimente” [Collection of scientific works dedicated to the 85th anniversary of Prof. A.S. Leontyuka “Structure of human and animal organism in norm, pathology and experiment”]. Minsk, 2017, pp. 300–304.
  18. Mnikhovich M.V. Morfologiya populyatsii tuchnykh kletok v strome molochnoi zhelezy pri fibrozno-kistoznoi bolezni i rake molochnoi zhelezy [Morphology of mast cell populations in breast stroma in fibrocystic disease and breast cancer]. In: Materialy ezhegodnoi nauchnoi konferentsii, posvyashchennoi 70-letiyu osnovaniya Ryazanskogo gosudarstvennogo meditsinskogo universiteta imeni akademika I.P. Pavlova [Materials of annual scientific conference dedicated to the 70th anniversary of Ryazan State Medical University named after Academician I.P. Pavlov]. Ryazan, 2013, pp. 98–101.
  19. Mnikhovich M.V., Vernigorodskii S.V., Gavrilyuk A.A., Miglyas V.G. Morfologicheskaya otsenka izmenenii tuchnokletochnykh populyatsii v strome molochnoi zhelezy pri fibroznokistoznoi bolezni i rake [Morphological assessment of mast cell population in mammary gland stroma in patients with fibrocystic breast condition, and cancer]. Nauka molodykh (Eruditio Juvenium), 2014, no. 1, pp. 26–36.
  20. Bobrov I.P., Avdalyan A.M., Klimachev V.V. at el.Modifikatsiya gistokhimicheskogo metoda vyyavleniya yadryshkovykh organizatorov na gistologicheskikh srezakh [Modification of the histochemical method for nucleolar organizers detecting on histological sections]. Patologii, 2010, no. 3, pp. 35–37.
  21. Struchko G.Yu., Merkulova L.M., Kostrova O.Yu. at el.Morfologicheskoe i immunogistokhimicheskoe issledovanie timusa v norme i posle primeneniya polioksidoniya (obzor literatury) [Morphological and immunohistochemical examination of the thymus in normal and after the use of polyoxidonium (literature review)]. Vestnik Chuvashskogo universiteta, 2012, no. 3, pp. 525–531.
  22. / Kostrova O.Yu., Stomenskaya I.S., Merkulova L.M. et al. Morfofunktsional’nye izmeneniya nadpochechnikov krys na fone razvitiya raka molochnoi zhelezy [Morphofunctional changes of adrenal glands in the rat on the background of breast cancer development]. Vestnik novykh meditsinskikh tekhnologii, 2018, no. 4, pp. 242–248.
  23. Omel’yanenko N.P., Kovalev A.V., Smorchkov M.M., Mishina E.S. Struktura sobstvennogo veshchestva rogovitsy glaza cheloveka [Structure of the corneal substantia propria of the human eye]. Morfologiya, 2017, vol. 151(3), p. 93.
  24. Cherdantseva T.M., Bobrov I.P., Klimachev V.V. et al. Tuchnye kletki pri rake pochki: kliniko-morfologicheskie paralleli [Mast cells in kidney cancer: clinical and morphological parallels]. Meditsina v Kuzbasse, 2011, vol. 10(2), pp. 48–51.
  25. Filin A.A., Chupandina E.E., Bugrimov D.Yu. et al. Tuchnye kletki pri kolorektal’nom rake: vozmozhnyi prognosticheskii marker? [Mast cells in colorectal cancer: a possible prognostic marker?] Postgenomnye tekhnologii: ot teorii k praktike. Sbornik trudov V Mezhdunarodnoi nauchnoi konferentsii. Voronezh, 2019, pp. 105–107.
  26. Tsibul’kina V.N., Tsibul’kin N.A. Tuchnaya kletka kak polifunktsional’nyi ehlement [Mast cell as poly-functional element of immune system]. Allergologiya i immunologiya v pediatrii, 2017, vol. 2, pp. 4–11.
  27. Shvalev V.N. Razvitie morfoklinicheskikh predstavlenii o neirotkanevykh svyazyakh: rol’ tuchnykh kletok v nervnoi trofike [Development of morphological ideas about neural tissue connections: the role of mast cells in nervous trophism]. Kazanskii meditsinskii zhurnal, 2010, vol. 91(5), pp. 687–689.
  28. Yalaletdinova L.R., Gordova V.S., Yastrebova S.A., Sergeeva V.E. Neiroimmunomoduliruyushchie svoistva khorionicheskogo gonadotropina [Neuroimmunomodulatory properties of chorionic gonadotropin]. Cheboksary, Chuvash University, 2016, 147 p.
  29. Ammendola M., Sacco R., Sammarco G. et al. Mast Cells Positive to Tryptase and c-Kit Receptor Expressing Cells Correlates with Angiogenesis in Gastric Cancer Patients Surgically Treated. Gastroenterol Res Pract. 2013, vol. 2013, 703163.
  30. Aoki M., Pawankar R., Niimi Y. Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol, 2003, vol. 130, pp. 216–223.
  31. Beer T., Ng L., Murray K. Mast Cells Have Prognostic Value in Merkel Cell Carcinoma. Am J Dermatopathol, 2008, vol. 30, pp. 27–30.
  32. Blair R.J., Meng H., Marchese M.J. et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. Clin. Investig, 1997, vol. 99, pp. 2691–2700.
  33. Brown M.A., Hatfield J.K. Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Immun, 2012, vol. 3, p. 147.
  34. Cai S.W., Yang S.Z., Gao J. et al. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery, 2011, vol. 149(4), pp. 576–584.
  35. Carlini M.J., Dalurzo M.C., Lastiri J.M. et al. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol, 2010, vol. 41(5), pp. 697–705.
  36. Chen J., Hu X.Y. Inhibition of histamine receptor H3R suppresses prostate cancer growth, invasion and increases apoptosis via the AR pathway. Lett, 2018, vol. 16, pp. 4921–4928.
  37. Claudatus J.J., d’Ovidio R., Lospalluti M. Skin tumors and reactive cellular infiltrate: further studies. Acta Derm Venereol, 1986, vol. 66, pp. 29–34.
  38. Cohen M., Rogers G. The significance of mast cells in basal cell carcinoma. J Am Acad Dermatol, 1995, vol. 33, pp. 514–517.
  39. Conti P. Role of mast cells in tumor growth. Ann Clin Lab Sci, 2007, vol. 37(4), pp. 315–322.
  40. Conti P., Caraffa A., Tete G. et al. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. Biol. Regul. Homeost. Agents, 2020, vol. 34, pp. 1629–1632.
  41. Da Silva E., Jamur M., Oliver C. Mast cell function: a new vision of an old cell. Histochem. Cytochem, 2014, vol. 62, pp. 698–738.
  42. Dabiri S., Huntsman D., Makretsov N. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol, 2004, vol. 17, pp. 690–695.
  43. Englund A., Molin D., Enblad G. et al. The role of tumour-infiltrating eosinophils, mast cells and macrophages in Classical and Nodular Lymphocyte Predominant Hodgkin Lymphoma in children. Eur J Haematol, 2016, vol. 97(5), pp. 430–438.
  44. Erkilic S., Erbagci Z. The significance of mast cells associated with basal cell carcinoma. J Dermatol, 2001, vol. 28, pp. 312–315.
  45. Faustino-Rocha A., Gama A., Neuparth M. et al. Mast Cells in Mammary Carcinogenesis: Host or Tumor Supporters. Anticancer Res, 2017, vol. 37(3), pp. 1013–1021.
  46. Fleischmann A., Schlomm T., Köllermann J. et al. Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate, 2009, vol. 69(9), pp. 976–981.
  47. Franco G., Guarnotta C., Frossi B. et al. Bone marrow stroma CD40 expression correlates with inflammatory mast cell infiltration and disease progression in splenic marginal zone lymphoma. Blood, 2014, vol. 123(12), pp. 1836–1849.
  48. Galinsky D., Nechushtan H. Mast cells and cancer-No longer just basic science. Crit Rev Oncol Hematol, 2008, vol. 68, no. 2, pp. 115–130.
  49. Guldur M.E., Kocarslan S., Ozardali H.I. et al. The relationship of mast cells and angiogenesis with prognosis in renal cell carcinoma. Pak. Med. Assoc, 2014, vol. 64(3), pp. 300–303.
  50. Hart P., Townley S., Grimbaldeston M. Mast cells, neuropeptides, histamine, and prostaglandins in UVinduced systemic immunosuppression. Methods, 2002, vol. 28, pp. 79–89.
  51. Humphreys T., Monteiro M., Murphy G. Mast cells and dendritic cells in basal cell carcinoma stroma. Dermatol Surg, 2000, vol. 26, pp. 200–204.
  52. Jimenez M., Cervantes-Garcia D., Cordova-Davalos L.E. et al. Responses of vast cells to pathogens: beneficial and detrimental roles. Fronties in immunology, 2021, vol. 12, pp. 1–31. DOI: 10.3389/fimmu.2021.685865.
  53. Johanson A., Rudolfsson S., Hammarsten P. et al. Mast cell are novel independent prognostic markers cancer and represent a target therapy. J. Pathol, 2010, vol. 177(2), pp. 1031–1041.
  54. Kalkusova K., Smite S., Darras E. et al. Mast cells and dendritic cells as cellular immune checkpoints in immunotherapy of solid tumors. J. Mol. Sci., 2022, vol. 23(19), 11080. DOI: https://doi.org/10.3390/ijms231911080.
  55. Lichterman J.N., Reddy S.M. Mast cells: a new frontier for cancer immunotherapy. Cells, 2021, vol. 10, pp.1–17. DOI: https://doi.org/10.3390/cells10061270.
  56. Litmanovich A., Khazim K., Cohen I. The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Ther., 2018, vol. 6, pp. 109–127.
  57. Ma Y., Hwang R.F., Logsdon C.D., Ullrich S.E. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res., 2013, vol. 73(13), pp. 3927–3937.
  58. Marech I., Ammendola M., Sacco R. et al. Serum tryptase, mast cells positive to tryptase and microvascular density evaluation in early breast cancer patients: Possible translational significance. BMC Cancer, 2014, vol. 14, p. 534.
  59. Martinel Lamas D.J., Nicoud M.B., Sterle H.A. et al. Histamine: A potential cytoprotective agent to improve cancer therapy? Cell Death Dis., 2015, vol. 6, e2029.
  60. Melillo R.M., Guarino V., Avilla E. et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 2010, vol. 29(47), pp. 6203–6215.
  61. Mendez-Enriquez E., Hallgren J. Mast cells and their progenitors in allergic asthma. Frontiers in immunology, 2019, vol. 10, p. 821. DOI: 10.3389/fimmu.2019.00821.
  62. Mohseni M.G., Mohammadi A., Heshmat A.S. et al. The lack of correlation between mast cells and microvessel density with pathologic feature of renal cell carcinoma. Urol. Nephrol, 2010, vol. 42(1), pp. 109–112.
  63. Mukai K., Tsai M., Saito H. et al. Mast cells as sources of cytokines, chemokines and growth factors. Immunol Rev., 2018, vol. 282(1), pp. 121–150. DOI:10.1111/imr.12634.
  64. Pal S., Nath S., Meininger C.J., Gashev A.A. Emerging roles of mast cells in the regulation of lymphatic immune-physiology. Frontiers in immunology, 2020, vol. 11, p. 1234. DOI: 10.3389/fimmu.2020.01234.
  65. Pittoni P., Colombo M.P. The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res, 2012, vol. 72(4), pp. 831–835.
  66. Portales-Cervantes L., Dawod B., Marshall J.S. Mast cells and natural killer cells-a potentially critical interaction. Viruses, 2019, vol. 11, p. 514. DOI: 10.3390/v11060514.
  67. Rao Q., Chen Y., Yeh C.R. et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/ CCR2 EMT/MMP9 signals. Oncotarget, 2016, vol. 7(7), pp. 7842–7855.
  68. Reddy S.M., Reuben A., Barua S. et al. Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer. Cancer Immunol. Res., 2019, vol. 7, pp. 1025–1035.
  69. Ribatti D., Ennas M., Vacca A. Tumor vascularity and tryptase positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest, 2003, vol. 33, pp. 420–425.
  70. Rönnberg E., Melo F. R., Pejler G. Mast cell proteoglycans. Cytochem, 2012, vol. 60, no. 12, pp. 950–962.
  71. Shikotra A., Ohri C.M., Green R.H. et al. Mast cell phenotype, TNFα expression and degranulation status in nonsmall cell lung cancer. Sci Rep., 2016, vol. 6(1), p. 38352.
  72. Siiskonen H., Poukka M., Bykachev A. et al. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res., 2015, vol. 25(6), pp. 479–485.
  73. Somasundaram R., Connelly T., Choi R. et al. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Commun., 2021, vol. 12, p. 346.
  74. Stone K.D., Prussin C., Metcalfe D.D. IgE, Mast Cells, Basophils, and Eosinophils. Allergy Clin. Immunol., 2010, vol. 125, pp. 73–80.
  75. Strauss-Albee D., Horowitz A., Parham P. Coordinated regulation of NK receptor expression in the maturing human immune system. , 2014, vol. 193(10), pp. 4871–4879.
  76. Theoharides T.C., Tsilioni I., Conti P. Mast cells may regulate the anti-inflammatory activity of IL-37. J. Mol. Sci., 2019, vol. 20, 3701. DOI:10.3390/ijms20153701.
  77. Tomita Y., Aozasa K., Myoui A. Histologic grading in soft-tissue sarcomas. An analysis of 194 cases including AgNOR count and mast-cell count. Int J Cancer, 1993, vol. 54, pp. 194–199.
  78. Toth T., Toth-Jakatics R., Jimi S. Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol, 2000, vol. 31, pp. 955–960.
  79. Tuna B., Yorukoglu K., Unlu M. et al. Association of mast cells with microvessel density in renal cell carcinomas. Urol, 2006, vol. 50(3), pp. 530–534.
  80. Vacca, A., Ribatti D., Roncali L. Melanocyte tumour progression is associated with changes in angiogenesis and expression of the 67-kilodalton laminin receptor. Cancer, 1993, vol. 72, pp. 455–461.
  81. Varricchi G., Marone G. Mast cells: fascinating but still elusive after 140 years from their discovery. Int. J. Mol. Sci., 2020, vol. 21, 464. DOI: 10.3390/ijms21020464.
  82. Visciano C., Liotti F., Prevete N. et al. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene, 2015, vol. 34(40), pp. 5175–5186.
  83. Vrricchia G., Rossia F.W., Galdieroa M.R. et al. Physiological roles of mast cells: collegium internationale allergologicum update 2019. Int Arch Allergy Immunol, 2019, vol. 179, pp. 247–261. DOI: 10.1159/000500088.
  84. Wang X., Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, vol. 29, pp. 1275–1288.
  85. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol, 2014, vol. 14(7), pp. 478–494. DOI: https://doi.org/10.1038/nri3690.

About authors

Timofeeva Natalya Yu.
Senior Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (bla11blabla@yandex.ru; ORCID: https://orcid.org/0000-0002-7596-0132)
Bubnova Natalia V.
Senior Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (natalia210485@yandex.ru; ORCID: https://orcid.org/0000-0002-2505-0827)
Samakina Ekaterina S.
Assistant Lecturer, Department of Instrumental Diagnostics Department with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (ekaterina1996.96@mail.ru; ORCID: https://orcid.org/0000-0002-9515-0639)
Stomenskaya Irina S.
Candidate of Medical Sciences, Assistant Professor, Department of the Instrumental Diagnostics with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (irina.stomenskaja@gmail.com; ORCID: https://orcid.org/0000-0001-7332-4477)
Kostrova Olga Yu.
Candidate of Medical Sciences, Assistant Professor, Head of Department of the Instrumental Diagnostics with a Course of Phthisiology, Chuvash State University, Russia, Cheboksary (evkbiz@yandex.ru; ORCID: https://orcid.org/0000-0002-7057-9834)
Struchko Gleb Yu.
Doctor of Medical Sciences, Professor, Head of Normal and Topographic Anatomy Department, Chuvash State University, Russia, Cheboksary (glebstr@mail.ru; ORCID: https://orcid.org/0000-0002-0549-5116)
Kotelkina Anastasiia A.
Candidate of Medical Sciences, Assistant Professor, Department of Normal and Topographic Anatomy Department, Chuvash State University, Russia, Cheboksary (ds6426@chebnet.com; ORCID: https://orcid.org/0000-0001-5366-5135)

Article link

Timofeeva N.Yu., Bubnova N.V., Samakina E.S., Stomenskaya I.S., Kostrova O.Yu., Struchko G.Yu., Kotelkina A.A. The Role of Mast Cells in Carcinogenesis (Literature Review) [Electronic resource] // Acta medica Eurasica. – 2023. – №1. P. 147-159. – URL: https://acta-medica-eurasica.ru/en/single/2023/1/17/. DOI: 10.47026/2413-4864-2023-1-147-159.