Single article

DOI: 10.47026/2413-4864-2023-3-58-73

Bokov A.E., Orlinskaya N.Yu., Bulkin A.A., Aleinik D.Ya., Charykova I.N., Egorikhina M.N., Antoshina V.V.

Effect of Using Multipotent Mesenchymal Stromal Cells in Bone Grafting with Xenogenic Biomaterials

Keywords: osteogenesis, bone tissue repair, xenograft, bone grafting, cellular technologies, mesenchymal stromal cells

Currently, there is a significant frequency of degenerative diseases of the spine after surgical interventions with the use of bone grafting, especially in elderly patients. The results of the research indicate that the use of stem cells is one of the promising areas to increase the efficiency of osseointegration. The aim of the study was to evaluate the effectiveness of osteogenesis in the conditions of using xenografts loaded with stem cells, as well as morphological features of osseointegration. Materials and methods. An experimental study was conducted on 22 male rabbits. 2 animals were used to obtain stem cells, the remaining animals were implanted with xenogenic bone–substituting material "Osteomatrix" in the iliac wing, of which 10 animals were implanted with a xenograft not populated with cells, and the other 10 animals were implanted with an identical xenograft populated with mesenchymal stromal cells. Withdrawal from the experiment was carried out on the 60th day after implantation. The material's examination was carried out using the methods of fluorescence and light microscopy. To assess the statistical significance of observed differences (evaluation of proliferation, neoangiogenesis and osseointegration) in the experimental and control groups, the Mann–Whitney U test was used with a critical significance of p ≤ 0.05. Results. When using an osteoplastic material that was not loaded with multipotent mesenchymal stromal cells within 60 days after surgery, osseointegration passes through indirect osteogenesis with formation of full-fledged bone tissue in the future, which increases the time of complete defect healing. In the case of using an osteomatrix loaded with multipotent mesenchymal stromal cells of the bone marrow, osteogenesis proceeds in a direct way with the formation of a full-fledged bone tissue. Osteomatrix loading with multipotent mesenchymal stromal cells stimulates neoangiogenesis and proliferative activity of the tissue, which promotes activation of bone tissue repair processes and stimulates the processes of xenograft osseointegration. Conclusions. The use of multipotent mesenchymal stromal cells in bone grafting using xenografts increases the efficiency of osseointegration by stimulating direct osteogenesis, increasing the activity of proliferation and angiogenesis.

References

  1. Volova L.T., Trunin D.M., Ponomareva Yu.Ya., Popov N.V. Issledovanie biosovmestimosti i tsitotoksichnosti personifitsirovannykh kostnykh implantatov s primeneniem kletochnykh tekhnologii [assessment of biocompatibility and cytotoxicity of personalized bone implants using cell cultures]. Vestnik meditsinskogo instituta «REAVIZ» (Reabilitatsiya, vrach i zdorov’e), 2017, no. 5, pp. 32–39.
  2. Teplyashin A.S., Sharifullina S.Z., Chupikova N.I., Sepiashvili R.I. Perspektivy ispol’zovaniya mul’tipotentnykh stvolovykh kletok kostnogo mozga i zhirovoi tkani v regulyatsii regeneratsii opornykh tkanei [Prospects for the use of multipotent stem cells of bone marrow and adipose tissue in the regulation of regeneration of supporting tissues]. Allergologiya i immunologiya, 2015, vol. 1, no. 6, pp. 138–148.
  3. Athanasiou V.T., Papachristou D.J., Panagopoulos A. et al. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: An experimental study in rabbits. Med Sci Monit, 2010, vol. 6(1), pp. 24–31. PMID: 20037482.
  4. Bartholomew A., Polchert D., Szilagyi E. et al. Mesenchymal stem cells in the induction of transplantation tolerance. Transplantation, 2009, vol. 87(9), pp. 55–57. DOI: 10.1097/TP.0b013e3181a287e6.
  5. Blanco J.F., Villarón E.M., Pescador D. et al. Autologous mesenchymal stromal cells embedded in tricalcium phosphate for posterolateral spinal fusion: Results of a prospective phase I/II clinical trial with long-term follow-up. Stem Cell Res Ther, 2019, vol. 10(1), p. 63. DOI: 10.1186/s13287-019-1166-4.
  6. Bueno E.M., Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol, 2009, vol. 5(12), pp. 685–697. DOI: 10.1038/nrrheum.2009.228.
  7. Cao W., Cao K., Cao J., Wang Y., Shi Y. Mesenchymal stem cells and adaptive immune responses. Immunol Lett., 2015, vol. 168(2), pp. 147–153. DOI: 10.1016/j.imlet.2015.06.003.
  8. Derman P.B., Singh K. Surgical Strategies for the Treatment of Lumbar Pseudarthrosis in Degenerative Spine Surgery: A Literature Review and Case Study. HSS J., 2020, vol. 16(2), pp. 183–187. DOI: 10.1007/s11420-019-09732-9. Epub 2019 Oct 30.
  9. Diomede F., Marconi G.D., Fonticoli L. et al. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci., 2020, vol. 21(9), pp. 3242. DOI: 10.3390/ijms21093242.
  10. Formica M., Vallerga D., Zanirato A. et al. Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: A meta-analysis and systematic review. Musculoskelet Surg., 2020, vol. 104(1), pp. 1–15. DOI: 1007/s12306-019-00634-x.
  11. Fu J., Wang Y., Jiang Y. et al. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther., 2021, vol. 12(1), p. 377. DOI: 10.1186/s13287-021-02456-w.
  12. Genova T., Petrillo S., Zicola E. et al. The Crosstalk Between Osteodifferentiating Stem Cells and Endothelial Cells Promotes Angiogenesis and Bone Formation. Front Physiol., 2019, no. 10, p. 1291. DOI: 10.3389/fphys.2019.01291.
  13. Granero-Moltó F., Weis J.A., Miga M.I. et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 2009, vol. 27(8), pp. 1887–1898. DOI: 10.1002/stem.103.
  14. Katagiri W., Kawai T., Osugi M. et al. Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells. Maxillofac Plast Reconstr Surg., 2017, vol. 39(1), p. 8. DOI: 10.1186/s40902-017-0106-4.
  15. Kiernan C.H., Wolvius E.B., Brama P.A.J., Farrell E. The immune response to allogeneic differentiated mesenchymal stem cells in the context of bone tissue engineering. Tissue Eng Part B Rev., 2018, vol. 24(1), pp. 75–83. DOI: 10.1089/ten.teb.2017.0175.
  16. Le Blanc K., Frassoni F., Ball L. et al. Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet, 2008, vol. 371(9624), pp. 1579–1586. DOI: 10.1016/s0140-6736(08)60690-x.
  17. Lin H., Sohn J., Shen H. et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, no. 203, pp. 96–110. DOI: 10.1016/j.biomaterials.2018.06.026.
  18. Liu H., Li D., Zhang Y., Li M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem Cell Biol., 2018, vol. 149(4), pp. 393–404. DOI: 10.1007/s00418-018-1643-3.
  19. Makino T., Tsukazaki H., Ukon Y. et al. The biological enhancement of spinal fusion for spinal degenerative disease. Int J Mol Sci., 2018, vol. 19(8), p. 2430. DOI: 10.3390/ijms19082430.
  20. Martin V., Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol., 2018, vol. 82(1), pp. 363–371. DOI: 10.1016/j.msec.2017.04.038.
  21. Mummaneni P.V., Dhall S.S., Eck J.C. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: Interbody techniques for lumbar fusion. J Neurosurg Spine, 2014, vol. 21(1), pp. 67–74. DOI: 10.3171/2014.4.SPINE14276.
  22. Pape H.C., Evans A., Kobbe P. Autologous bone graft: Properties and techniques. J Orthop Trauma, 2010, vol. 24(1), pp. 36–40. DOI: 10.1097/bot.0b013e3181cec4a1.
  23. Qin Y., Guan J., Zhang C. Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J., 2014, vol. 90(1069), pp. 643–647. DOI: 10.1136/postgradmedj-2013-132387.
  24. Rahimzadeh A., Mirakabad F.S., Movassaghpour A. et al. Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system. Artif Cells Nanomed Biotechnol, 2016, vol. 44(2), pp. 559–570. DOI: 10.3109/21691401.2014.968823.
  25. Reisener M.J., Pumberger M., Shue J. et al. Trends in lumbar spinal fusion – a literature review. J Spine Surg, 2020, vol. 6(4), pp. 752–761. DOI: 10.21037/jss-20-492.
  26. Resnick D.K., Watters W.C., Sharan A. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: Lumbar fusion for stenosis with spondylolisthesis. J Neurosurg Spine, 2014, vol. 21(1), pp. 54–61. DOI: 10.3171/2014.4.SPINE14274.
  27. Shin R.L., Lee C.W., Shen O.Y. et al. The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review. Stem Cells Int., 2021, no. 14, 8835156. DOI: 10.1155/2021/8835156.
  28. Todeschi M.R., El Backly R., Capelli C. et al. Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev., 2015, vol. 24(13), pp. 1570–1581. DOI: 1089/scd.2014.0490.
  29. Yousefi AM.., James P.F., Akbarzadeh R. et al. Prospect of stem cells in bone tissue engineering: A review. Stem Cells Int., 2016, vol. 2016, 6180487. DOI: 10.1155/2016/6180487.
  30. Zigdon-Giladi H., Rudich U., Michaeli Geller G., Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells, 2015, vol. 7(3), pp. 630–640. DOI: 10.4252/wjsc.v7.i3.630.

About authors

Bokov Andrey E.
Candidate of Medical Sciences, Head of the Department of Oncology and Neurosurgery (Cerebral Division), Institute of Traumatology and Orthopedics, University Clinic, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (bocov_a@pimunn.net; ORCID: https://orcid.org/0000-0002-5203-0717)
Orlinskaya Natalia Yu.
Doctor of Medical Sciences, Professor, Chief Researcher, Head of the Group of Pathological Anatomy, Laboratory Diagnostics Department, Scientific and Clinical Department, Institute of Traumatology and Orthopedics (Science), University Clinic, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (orlinskaya_n@pimunn.net; ORCID: https://orcid.org/0000-0003-2896-2968)
Bulkin Anatoly A.
Neurosurgeon, University Clinic, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (bulkin_a@pumunn.net; ORCID: https://orcid.org/0000-0003-4391-7698)
Aleinik Dina Ya.
Candidate of Medical Sciences, Senior Researcher, Laboratory of Regenerative Medicine, Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (aleynic_d@pimunn.net; ORCID: https://orcid.org/0000-0002-8339-1291)
Charykova Irina N.
Physician, Laboratory of Biotechnology, University Clinic, Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (charikova_i@pimunn.net; ORCID: https://orcid.org/0000-0002-8224-6375)
Egorikhina Marfa N.
Candidate of Biological Sciences, Leading Researcher, Laboratory of Regenerative Medicine, Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (egorichina_m@pimunn.net; ORCID: https://orcid.org/0000-0002-8815-9651)
Antoshina Veronika V.
Candidate of Biological Sciences, Researcher, Group of Pathological Anatomy, Laboratory Diagnostics Department, Scientific and Clinical Department, Institute of Traumatology and Orthopedics (Science), University Clinic, Privolzhsky Research Medical University (PIMU), Russia, Nizhny Novgorod (antoshina_v@pimunn.net; ORCID: https://orcid.org/0000-0002-8244-3985)

Article link

Bokov A.E., Orlinskaya N.Yu., Bulkin A.A., Aleinik D.Ya., Charykova I.N., Egorikhina M.N., Antoshina V.V. Effect of Using Multipotent Mesenchymal Stromal Cells in Bone Grafting with Xenogenic Biomaterials [Electronic resource] // Acta medica Eurasica. – 2023. – №3. P. 58-73. – URL: https://acta-medica-eurasica.ru/en/single/2023/3/7/. DOI: 10.47026/2413-4864-2023-3-58-73.