Single article

DOI: 10.47026/2413-4864-2021-2-34-43

Grigoreva E.A., Gordova V.S., Sergeeva V.E., Smorodchenko A.T.

Reaction of CD68-Positive rat Liver and Spleen Cells on Silicon Intake with Drinking Water

Keywords: silicon, liver, spleen, macrophages, CD68-positive cells

The article presents data on the long-term effect (nine months) of a silicon compound supplied with drinking water – nonahydrate sodium metasilicate (10 mg/l in terms of silicon), on CD68-positive macrophages in the liver and spleen of laboratory rats. Changes in the morphological characteristics of this cell population were found. There was a decrease in the average cell area (in the liver of the control group of rats, the average macrophage area was 179.23±5.94 microns2, and in the group receiving silicon with drinking water – 117.04±3.35 microns2; in the spleen-136.02±3.93 microns2 and 103.44±2.8 microns2, respectively). Macrophages in the liver preparations of the experimental group of rats had a fewer processes and a darker cytoplasmic membrane. The number of macrophages in the liver per unit area was comparable, for the control group of rats it was 18.78±1.24, and for the rats that received with water with the addition of silicon – 19.41±0.75 cells. CD68+ macrophages of the red splenic pulp in laboratory rats that received silicon also underwent the following morphological changes: they were located in a denser way and had fewer processes, while the number of macrophages per unit area was 73.7±2.3 for the control group, 91.6±5.0-for the experimental group, respectively. The distance between them did not change. There was a change in the intensity of CD68 expression on the surface of the cytoplasmic membrane and in the cytoplasm of liver and spleen macrophages. These changes can be interpreted as the adaptive ability of liver and spleen macrophages to silicon introduced with drinking water. Given the heterogeneity of the macrophage population in the liver and spleen, further studies using markers for different subpopulations of macrophages are needed to clarify their role in the response of tissues to silicon supplied with drinking water.

References

  1. Gordova V.S., D’yachkova I.M., Sergeeva V.E., Sapozhnikov S.P., Smorodchenko A.T. Morfofunktsional’naya adaptatsiya struktur timusa krys na postuplenie kremniya s pit’evoi vodoi [Morphofunctional adaptation of rat thymus structures to the intake of silicon with drinking water]. Byulleten’ eksperimental’noi biologii i meditsiny, 2014, vol. 158, no. 12, pp. 786–790.
  2. Gordova V.S., Grigor’eva E.A., Prokhorova A.I., Smorodchenko A.T., Sergeeva V.E. Makrofagi limfoidnykh organov v eksperimentakh s dlitel’nym postupleniem kremniya s pit’evoi vodoi [Macrophages of lymphoid organs in experiments with long-term intake of silicon with drinking water]. Morfologiya, 2018, vol. 153, no. 3, p. 79.
  3. Gordova V.S., Sergeeva V.E., Korshunova A.I., Grigor’eva E.A., Golenkova V.A., Smir-nova S.S., Pavlova O.V., Yastrebova S.A., Karyshev P.B., Sapozhnikov S.P. Gistaminsoder-zhashchie kletki limfoidnykh organov laboratornykh gryzunov v eksperimente [Histamine-containing cells of lymphoid organs of laboratory rodents in experiment]. Vestnik novykh meditsinskikh tekhnologii, 2018, vol. 25, no. 3, pp. 107–115.
  4. Gordova V.S., D’yachkova I.M. Antigenprezentiruyushchie kletki limfoidnykh orga-nov [Antigen-presenting cells of lymphoid organs]. Vestnik Chuvashskogo universiteta, 2014, no. 2, pp. 217–224.
  5. Grigor’eva E.A. Morfologicheskie osobennosti pecheni pri vozdeistvii vodo-rastvorimogo soedineniya kremniya [Morphological features of the liver when exposed to a water-soluble silicon compound]. Meditsinskii akademicheskii zhurnal, 2016, vol. 16, no. 4, pp. 71–72.
  6. Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Gmoshinskii I.V., Khotim-chenko S.A. Vliyanie nanochastits dioksida kremniya na morfologiyu vnutrennikh organov u krys pri peroral’nom vvedenii [Effect of silicon dioxide nanoparticles on the morphology of internal organs in rats after oral administration]. Analiz riska zdorov’yu, 2016, no. 4, pp. 80–94.
  7. Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Akaf’eva T.I. Sravnitel’naya otsenka toksichnosti vodnoi suspenzii nano- i mikrodispersnogo dioksida kremniya v subkhro-nicheskom eksperimente [Comparative evaluation of the toxicity of an aqueous suspension of nano- and microdispersed silicon dioxide in a subchronic experiment]. Analiz riska zdorov’yu, 2014, no. 1, pp. 74–82.
  8. Moskvichev E.V., Merkulova L.M., Struchko G.Yu. et al. Immunogistokhimicheskaya kharakteristika aktsidental’noi involyutsii timusa posle splenektomii[Immunohistochemical characterization of accidental evolution of the thymus after splenectomy]. Vestnik Natsional’nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova , 2012, vol. 7, no. 2, pp. 40–43.
  9. Sapozhnikov S.P., Gordova V.S. Rol’ soedinenii kremniya v razvitii autoimmun-nykh protsessov [The role of silicon compounds in development of autoimmune processes (a review)]. Mikroelementy v meditsine, 2013, no. 3, pp. 3–13.
  10. Yastrebova S.A., Illarionova S.V., Zaytseva N.A., Sergeyeva V.E. Reaktsiya CD68 pozitivnykh kletok selezenki i timusa na vvedeniye immunomodulyatorov[The reaction of CD68 positive cells of the spleen and thymus to the introduction of immunomodulators]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy, 2016, no. 4-3, pp. 589–593.
  11. Chen Q., Xue Y., Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. International Journal of Nanomedicine, 2013, no. 8, pp. 1129–1149.
  12. Lefkowitch J.H., Haythe J.H., Regent N. Kupffer cell aggregation and perivenular distribution in steatohepatitis. Modern Pathology, 2002, vol. 15, no. 7, pp. 699–704.
  13. Jurkić L.M., Cepanec I., Pavelić S.K., Pavelić K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition & Metabolism, 2013, vol. 10:2.
  14. Sergent, T., Croizet K., Schneider Yves-J. In Vitro Investigation of Intestinal Transport Mechanism of Silicon, Supplied as Orthosilicic Acid-Vanillin Complex. Nutr. Food Res, 2017, vol. 61, no. 2, DOI: 10.1002/mnfr.201600602.
  15. Yang Y., Yang L., Wen W., Minghua J., Zhongjun D., Yanbo L., Junchao D., Yougbo Y., Zhiwei S. Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS ONE, 2013, vol. 8, no. 4, pp. e61346.

About authors

Grigoreva Evgeniia A.
Post-Graduate Student of Biology and Microbiology Department, Chuvash State University, Russia, Cheboksary (shgrev@yandex.ru; )
Gordova Valentina S.
Candidate of Medical Sciences, Assistant Professor of Fundamental Medicine Department, Immanuel Kant Baltic Federal University, Russia, Kaliningrad (crataegi@rambler.ru; ORCID: https://orcid.org/0000-0001-5109-9862)
Sergeeva Valentina E.
Doctor of Biological Sciences, Professor, Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (kaf-biology@yandex.ru; )
Smorodchenko Alina T.
Professor for Anatomy, MSH-Medical School Hamburg, University of Applied Sciences and Medical, Germany, Hamburg (alinasmoro@yahoo.de; )

Article link

Grigoreva E.A., Gordova V.S., Sergeeva V.E., Smorodchenko A.T. Reaction of CD68-Positive rat Liver and Spleen Cells on Silicon Intake with Drinking Water [Electronic resource] // Acta medica Eurasica. – 2021. – №2. P. 34-43. – URL: http://acta-medica-eurasica.ru/en/single/2021/2/5/. DOI: 10.47026/2413-4864-2021-2-34-43.