Single article

DOI: 10.47026/2413-4864-2021-1-40-56

Kozlov V.A., Aleksandrova V.Yu., Vasilyeva Yu.V., Sapozhnikov S.P., Karyshev P.B.

Systemic Amyloidosis in Young Mice Induced by Human Saliva Administration

Keywords: mice, experimental amyloidosis, human saliva, Congo red, kidney, spleen, liver, colorimetry, cytological analysis

The urgency of the study lies in the fact that for the first time it was proved in the experiment that intraperitoneal administration of human saliva to young mice causes the development of systemic amyloidosis, comparable to hereditary systemic amyloidosis in humans, induced by mutagenic changes in saliva lysozyme. The aim of the research: to test human saliva as an amyloidogen in a model experiment on young mice in comparison with the albumin model of amyloidosis that we developed earlier. White male mice weighing 20.0–25.0 g were divided into six groups: Intact mice (5); 30 days 1 time every other day were intraperitoneally administered to groups: 1 (5) soy cream substitute TU 9199-004-58706213-10 15 10 g/100 ml water 0.1 ml/10 g; 2 (3) saliva of a healthy person (SHP) 0.5 ml; 3 (3) SHP and Ciprofloxacin (C) 0.05 mg/10 g of weight; 4 (3) saliva of a person with chronic tonsillitis (remission, SCT); 5 (3) SCT+C. Kidney weight changed from 176.0±21 mg in intact mice (IM) to 197±43,0, 195,0±18,0, 195,0±18,0, 183,0±44,0, 153,0±25,0 mg, respectively. The number of cells per visual field of the tubular epithelium decreased by 1.3, 1.2, 1.6, 1.4, 1.4 times from the number of cells per visual field in IM 380.0±84.0 (p = 0.00), glomerular cells – by 1.4, 1.1, 1.3, 1.2, 1.2 times from the number of glomerular cells in IM 34.0±11.0 (p = 0.02), in groups 1-5, respectively. The glomerular area decreased by 2.4, 2.7, 2.3, 2.4, 3.0 times from the average glomerular area in IM (3163.7±832.7 mm2, p = 0.0000). The relative area of amyloid lesion when stained with Congo red: 18.4±8.2% (group 1), 26,7±10,6, 35,0±11,9, 45,7±13,2, 63,6±14,0% (groups 1-5). The spleen mass and length increased from 133.0±16.0 mg (IM) by 1.7, 1.7, 1.8, 2.1, 1.7 times and from 17.0±2.0 mm (IM) by 1.2, 1.2, 1.3, 1.4, 1.2 times, the number of cells per visual field decreased from 1318±205 (IM) by 1.7, 2.0, 3.3, 2.1, 2.0 times, groups 1-5, respectively (p < 0.01). The relative area of amyloid lesion in Congo red staining: 11,4±9,4%, 28,2±16,0, 27,9±20,8, 20,9±12,2, 16,5±8,3% (groups 1-5). The liver mass changed from 1.4±0.15 g (IM) to 1,57±0,26, 1,45±0,18, 1,53±0,1, 1,71±0,3, 1,36±0,4 g, the number of cells per visual field decreased from 67.0±15.0 (IM) by 1.9, 1.4, 1.8, 2.5, 1.9 times, the area of hepatocyte nuclei – from 54.0±12.3 µm (IM) by 3.1, 3.6, 4.2, 3.1, 3.3 times (groups 1-5, respectively, p < 0.01). The relative area of amyloid lesion in Congo red staining: 6,8±4,6%, 15,3±11,0, 24,5±12,8, 9,8±8,5, 12,6±2,3% (groups 1-5). Conclusions: 1) human saliva when administered intraperitoneally causes severe systemic amyloidosis in young mice with damage to the liver, kidneys and the spleen, which manifests more by cytotoxic effect than the volume of amyloid deposition; 2) human saliva contains a more active amyloidogen than albumin in combination with fillers of the soy cream substitute formulation; 2) human saliva of a person with chronic tonsillitis in remission is more amyloidogenic than the saliva of a healthy person; 3) Ciprofloxacin, administered in a therapeutic dose during the amyloid model formation, moderately increases the severity of amyloid organ damage; 4) human saliva can be used to simulate amyloidosis in an experiment on young mice; 5) the liver may contain enzymatic systems that perform the function of amyloidoclasia.

References

  1. Kozlov V.A., Sapozhnikov S.P., Karyshev P.B. Model sistemnogo amiloidoza u molodykh myshey [Model of systemic amyloidosis in young mice]. Byulleten’ eksperimental’noy biologii i meditsiny, 2016, vol. 162, no. 10, pp. 523–527. doi: 10.1007/s10517-017-3652-y. Russian.
  2. Kozlov V.A., Sapozhnikov S.P., Sheptukhina A.I., Golenkov A.V. Sravnitelnyi analiz razlichnykh modelei amiloidoza [The Comparative Analysis of Various Amyloid Models]. Vestnik Rossiiskoi akademii meditsinskikh nauk, 2015, vol. 70, no. 1, pp. 5–11.
  3. Пат. РФ 2373581(51) МПК G09B23/28. Способ моделирования экспериментального амилоидоза у животных / Габуева А.А., КозыревК.М., Брин В.Б. заявители, патентообладатель Северо-Осетинская государственная медицинская академия. Заявка 2008128201/14, Заявл. 10.07.2008; опубл. 20.11.2009. Бюл. № 32. 8 стр. Gabueva A.A., Kozyrev K.M., Brin V.B. Sposob modelirovaniya eksperimental’nogo amiloidoza u zhivotnykh [How to model experimental amyloidosis in animals] Patent RF, no 2373581(51), 2008.
  4. Пат. РФ 2446482(51) МПК G09B23 / 28. Способ моделирования экспериментального амилоидоза у животных / Брин В.Б., БеликоваА.Т., Козырев К.М. заявители, патентообладатель Северо-Осетинская государственная медицинская академия. Заявка 2010146365/14, Заявл. 13.11.2010; опубл. 27.03.2012. Бюл. № 9. 9 стр. Brin V.B., Belikova A.T., Kozyrev K.M. Sposob modelirovaniya eksperimental’nogo amiloidoza u zhivotnykh [How to model experimental amyloidosis in animals] Patent RF, no 2446482(51).
  5. Frare E., Mossuto M.F., de Laureto P.P., Dumoulin M., Dobson C.M., Fontana A. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Mol. Biol., 2006, vol. 361, no. 3, pp. 551–561. DOI: 10.1016/j.jmb.2006.06.055.
  6. Granel B., Serratrice J., Valleix S., Grateau G., Droz D., Lafon J., Sault M.C., Chaudier B., Disdier P., Laugier R., Delpech M., Weiller P.J. A family with gastrointestinal amyloidosis associated with variant lysozyme. Gastroenterology, 2002, vol. 123, no. 4, pp. 1346– DOI: 10.1053/gast.2002.36022.
  7. Granel B., Valleix S., Serratrice J., Chérin P., Texeira A., Disdier P., Weiller P.J., Grateau G. Lysozyme amyloidosis: report of 4 cases and a review of the literature. Medicine (Baltimore), 2006, vol. 85, no. 1, pp. 66– DOI: 10.1097/01.md.0000200467.51816.6d.
  8. Kozlov V.A., Sapozhnikov S.P., Fufayeva A.I. Chronic tonsillitis as an inducer of the tonsils amyloidosis. In: Proc. of Int. Conf. «Scientific research of the SCO countries: synergy and integration», 2019, pp. 118–127.
  9. Mari E., Ricci C., Pieraccini S., Spinozzi F., Mariani P., Ortore M.G. Trehalose Effect on the Aggregation of Model Proteins into Amyloid Fibrils. Life (Basel), 2020, vol. 10, no. 5, pp. 60. DOI: 10.3390/life10050060.
  10. Merlini G., Bellotti V. Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Chim. Acta, 2005, vol. 357, no. 2, pp. 168–172. DOI: 10.1016/j.cccn.2005. 03.022.
  11. PepysB., Hawkins P.N., Booth D.R., Vigushin D.M., Tennent G.A., Soutar A.K., Totty N., Nguyen O., Blake C.C., Terry C.J., Feest T.G., Zalin A.M., Hsuan J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 1993, vol. 362(6420), pp. 553–557. DOI: 10.1038/362553a0.
  12. Sipe J., Benson M., Buxbaum J., Ikeda S., Merlini G., Saraiva M., Westermark P. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid., 2012, vol. 19, no. 4, pp. 167–170. DOI: 10.3109/13506129.2012.
  13. Swaminathan R., Ravi V.K., Kumar S., Kumar M.V., Chandra N. Lysozyme: a model protein for amyloid research. Protein Chem. Struct. Biol., 2011. V. 84. P. 63–111. doi: 10.1016/B978-0-12-386483-3.00003-3.
  14. Yazaki M., Farrell S.A., Benson M.D. A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int., 2003, vol. 63, no. 5, pp. 1652– DOI: 10.1046/j.1523-1755.2003.00904.x.
  15. Zhenyu Li, Hui Xu, Dan Liu, Danyang Li, Gang Liu, Su-Xia Wang. Hereditary renal amyloidosis with a variant lysozyme p.Trp82Arg in a Chinese family: case report and literature review. BMC Nephrol., 2019, vol. 20, no. 1, p. 310. DOI: 10.1186/s12882-019-1496-6.
  16. Zhou L., Brouwers N., Benilova I., Vandersteen A., Mercken M., Van Laere K., Van Damme P., Demedts D., Van Leuven F., Sleegers K., Broersen K., Van Broeckhoven C., Vandenberghe R., De Strooper B. Amyloid precursor protein mutation E682K at the alternative β-secretase cleavage β’-site increases Aβ generation. EMBO Mol Med., 2011, vol. 3, no. 5, pp. 291– DOI: 10.1002/emmm. 201100138.

About authors

Kozlov Vadim A.
Doctor of Biological Sciences, Candidate of Medical Sciences, Professor of the Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (pooh12@yandex.ru; ORCID: https://orcid.org/0000-0001-7488-1240)
Aleksandrova Vera Yu.
Student of Medical Faculty, Chuvash State University, Russia, Cheboksary (verochka789@mail.ru; ORCID: https://orcid.org/0000-0002-5841-7373)
Vasilyeva Yulia V.
Student of Medical Faculty, Chuvash State University, Russia, Cheboksary (yulya-cbx@mail.ru; ORCID: https://orcid.org/0000-0003-1503-8645)
Sapozhnikov Sergey P.
Doctor of Medical Sciences, Head of the Department of Medical Biology with a course in Microbiology and Virology, Chuvash State University, Russia, Cheboksary (adaptogon@mail.ru; ORCID: https://orcid.org/0000-0003-0967-7192)
Karyshev Pavel B.
Laboratory Assistant, Department of Medical Biology with the Course of Microbiology and Virology, Chuvash State University, Russia, Cheboksary (pkarmol@mail.ru; ORCID: https://orcid.org/0000-0002-7703-8889)

Article link

Kozlov V.A., Aleksandrova V.Yu., Vasilyeva Yu.V., Sapozhnikov S.P., Karyshev P.B. Systemic Amyloidosis in Young Mice Induced by Human Saliva Administration [Electronic resource] // Acta medica Eurasica. – 2021. – №1. P. 40-56. – URL: https://acta-medica-eurasica.ru/en/single/2021/1/5/. DOI: 10.47026/2413-4864-2021-1-40-56.