Статья журнала

Ильина Л.Ю., Ефейкина Н.Б.

Состояние популяции тучных клеток почек мышей при экспериментальном амилоидозе

Ключевые слова: экспериментальный амилоидоз, тучные клетки, мыши, почка, профилактика, красное виноградное вино, фруктоза

Цель исследования – изучение реакции популяции тучных клеток (ТК) почек на формирование экспериментальной модели амилоидоза и коррекцию амилоидогенеза при помощи перорального спонтанного потребления сухого красного вина. В эксперименте использовано 19 белых беспородных мышей 30-дневного возраста, которых разделили на четыре группы – интактная группа 5 мышей (И), мышам второй (КМ), третьей (ВМ) и четвертой (ВФ) групп (по 3 мыши в каждой группе) одновременно моделировали генерализованный амилоидоз с помощью внутрибрюшинного введения водного раствора 10 г на 100 мл соевого заменителя сливок ТУ 9199-004-58706213-10 15 раз через день из расчета 0,1 мл на 10 г массы мыши. Вторая группа (контроль модели – КМ) служила контролем формирования модели генерализованного амилоидоза. Группа ВМ получала перорально в режиме свободного доступа сухое красное вено Каберне (Крым), ВФ – тоже вино с добавлением 5% фруктозы. Контроль сформированности модели и тяжесть формирующегося амилоидоза контролировали по окрашиванию конго красным, ТК выявляли окрашиванием по Унна, после чего оценивали степень сульфатированности гепарина ТК и их склонность к дегрануляции. При гистологическом изучении фронтальных срезов почек выявлено выраженное амилоидное поражение почек мышей в группе КМ, в группах ВМ и ВФ морфологическая структура срезов не отличалась от таковой у интактных мышей, небольшие отложения амилоида наблюдались в отдельных артериолах, а также в виде пыли в некоторых клубочках и кортикальных канальцах. Моделирование амилоидоза увеличивало сумму β3- и γ-метахромных форм ТК в капсуле почки и кортикальных отделах от 3,68% у интактных животных до 20,35% в группе КМ (p = 0,019, z тест). В группе КМ наблюдалось также увеличение количества тотально распавшихся ТК от 2,2% у интактных мышей до 9,5% в группе КМ (p = 0,0000, z тест). Потребление вина поддерживало цитологический статус популяции ТК у этих мышей на уровне, сопоставимом с уровнем у интактных мышей: сульфатированные формы в группе ВМ – 3,45%, ВФ – 9,38% (p=0,0000, z тест, к интактным и ВМ). Наблюдалось исчезновение тотально распавшихся ТК в группах ВМ и ВФ. Доля Т0 форм клеток увеличивалась в 1,56 раза (p = 0,0597, z-тест) в группе ВМ и в 2,1 раза в группе ВФ (p = 0,0013, z тест). Сделан вывод, что тучные клетки являются чувствительными маркерами, реагирующими на амилоидогенез изменением как степени «зрелости» содержащихся в них мукополисахаридов, так и количества форм, в том числе и дегранулирующих клеток; красное виноградное сухое вино может являться фактором профилактики амилоидной болезни.

Ilyna L., Efeykina N.

The state of mast cells population in mice kidneys in experimental amyloidose

Keywords: experimental amyloidosis, mast cells, mice, kidney, prophylaxis, red grape wine, fructose

The aim of the study was to study the reaction of mast cells (MS) population in the kidneys to formation of an experimental model of amyloidosis and correction of amyloidogenesis by means of oral spontaneous consumption of dry red wine. In the experiment 19 white outbred mice aged 30 days were used, they were divided into four groups – intact group of 5 mice (I),mice of the second group (CM), third (VM) and fourth (VF) groups (3 mice in each group) had simultaneously generalized amyloidosis simulated by intraperitoneal injection of an aqueous solution of 10 g per 100 ml of soy cream substitute TU 9199-004-58706213-10 15 times every other day at a rate of 0.1 ml per 10 g of mouse weight. The second group (control model – CM) served as control for forming generalized amyloidosis model. VM group received dry red vein Cabernet (Crimea) per os in the mode of free access, VF group received wine as well with supplement of 5% fructose. The control of the model formation and the severity of amyloidosis being formed were controlled by staining with congo red, MS were detected by Unna staining, and then the degree of heparin sulphatedness in mast cells and their tendency to degranulate were assessed. Histological examination of the frontal renal sections revealed a marked amyloid damage of kidneys of CM group mice, in VM and VF groups the morphological structure of sections did not differ from the one in intact mice, small deposits of amyloid were observed in individual arterioles as well as in the form of dust in some glomeruli and cortical tubules. Amyloidosis modeling increased the sum of β3 and γ-metachrome MS forms in the kidney capsule and in cortical areas from 3,68% in intact animals to 20,35% in the CM group (p = 0,019, z test).In CM group, there was an increase in the number of total destroyed MS from 2,2% in intact mice to 9,5% in CM group (p = 0,0000, z- test). Wine consumption supported the cytological status of MS population in these mice at a level comparable to intact mice: sulphated forms in VM group – 3,45%, in VF group – 9,38% (p = 0,0000, z- test, intact and VM). Disappearance of totally destroyed MS in VM and VF groups was observed. The proportion of T0 cell forms increased 1.56 times (p = 0,0597, z-test) in VM group and 2,1-fold in VF group (p = 0,0013, z -test). It was concluded that mast cells were sensitive markers reacting to amyloidogenesis both by changing the degree of "maturity" of mucopolysaccharides contained in them, and by changing the number of forms, including degranulating cells; red grape dry wine can be a factor for preventing amyloid disease.

Литература

  1. Артишевский А.А., Леонтюк А.С., Слука Б. А. Гистология с техникой гистологических исследований. Минск: Высш. шк., 1999. 236 с.
  2. Баглай Е.О., Дубиков А.И. Тучные клетки – ключевые участники патогенеза иммуновоспалительных заболеваний // Научно-практическая ревматология. 2015. Т. 53, № 2. С. 182–189. DOI: http://dx.doi.org/10.14412/1995-4484-2015-182-189.
  3. Бусова О.С., Козлов В.А. Может ли цинк профилактировать почечный фиброз? // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. 2010. № 1. С. 16–19.
  4. Гордон Д.С. Тинкториальные параллели тучных клеток. Макро-микроструктура тканей в норме, патологии и эксперименте. Чебоксары: Изд-во Чуваш. ун-та, 1981. С. 97–101.
  5. Западнюк И.П., Западнюк В.И., Захария Е.А., Западнюк Б.В. Лабораторные животные. Разведение, содержание, использование в эксперименте. 3-е изд., перераб. и доп. Киев: Высш. шк., 1983. 383 с.
  6. Ильина Л.Ю., Ефейкина Н.Б. Тучные клетки и амилоидогенез [Электронный ресурс] // Acta Medica Eurasica. 2016. № 4. С. 41– URL: http://acta-medica-eurasica.ru/single/2016/4/8.
  7. Козлов В.А., Глазырина О.С. Миграция тучных клеток в почке // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. 2010. № 1(65). С. 40–46.
  8. Козлов В.А., Глазырина О.С. Популяция тучных клеток почки и почечной капсулы. М.: ОАО «Щербинская типография», 2009. 104 с.
  9. Козлов В.А., Сапожников С.П., Митрасов Ю.Н., Авруйская А.А., Карышев П.Б., Шептухина А.И., Николаева О.В. Амилоид и молекулярные моторы // Наука и инновации – 2015: материалы X Междунар. науч. школы. Йошкар-Ола: Поволжский гос. технол. ун-т, 2015. С. 197–
  10. Козлов В.А., Сапожников С.П., Карышев П.Б., Шептухина А.И., Николаева О.В. Модель системного амилоидоза у молодых мышей // Бюллетень экспериментальной биологии и медицины. 2016. Т. 162, № 10. С. 523–527.
  11. Линднер Д.П., Поберин И.А., Розкин М.Я., Ефимов В.С. Морфометрический анализ популяции тучных клеток // Архив патологии. 1980. № 6. С. 60–64.
  12. Сапожников С.П., Карышев П.Б., Шептухина А.И., Николаева О.В., Авруйская А.А., Митрасов Ю.Н., Козлов В.А. Новые флюоресцентные зонды для выявления амилоида // Современные технологии в медицине. 2017. Т. 9, № 2. С. 91– DOI: 10.17691/stm2017.9.2.11.
  13. Шептухина А.И., Николаева О.В., Козлов В.А., Сапожников С.П. Роль этанола в формировании экспериментального амилоидоза // Научный фонд «Биолог». 2015. № 10(14). С. 47–50.
  14. Юрина Н.А., Радостина А.И. Морфофункциональная гетерогенность и взаимодействие клеток соединительной ткани. М.: Изд-во УДН, 1990. 398 с.
  15. Anekonda T.S. Resveratrol – a boon for treating Alzheimer’s disease? Brain Res. Rev., 2006, vol. 52, no. 2, pp. 316–326.
  16. Bartolini M., Andrisano V. Strategies for the Ingibition of Protein Aggregation in Human Diseases. Bio. Chem., 2010, vol. 11, pp. 1–19.
  17. Bohle A., Wehrmann M., Eissele R., von Gise H., Mackensen-Haen S., Muller C. The long-term prognosis of AA and AL renal amyloidosis and the pathogenesis of chronic renal failure in renal amyloidosis. Res. Pract., 1993, vol. 9, no 3, pp. 316–331.
  18. Schiff L., Schiff E.R., eds.; Cohen A. S., Skinner M. Diseases of the Liver. 6th Philadelphia, 1988, pp. 1093–1108.
  19. Danilewicz M., Wagrowska-Danilewicz M. Quantitative analysis of interstitial mast cells in AA and AL renal amyloidosis. Res. Pract., 2002, vol. 198, no. 6, pp. 413–419.
  20. Gafni J., Merker H.J., Shibolet S., Sohar E., Heller H. On the origin of amyloid. Intern. Med., 1966, vol. 65, pp. 1031–1044.
  21. Gritsman A. Effect of histamine and diprazin on the course of experimental amyloidosis in mice. Patol., 1975, vol. 37, no. 7, pp. 50–56.
  22. Gueft B., Chidoni J.J. The site of formation and ultrastructure of amyloid. J. Path., 1963, vol. 43, pp. 837–854.
  23. Harcha P.A., Vargas A., Yi C., Koulakoff A.A., Giaume C., Saez J.C. Hemichannels Are Required for Amyloid β – Peptide-Induced Degranulation and Are Activated in Brain Mast Cells of APPswe/PS1dE9 Mice. Neurosci., 2015, vol. 35, no. 25, pp. 9526–9538. DOI: 10.1523/JNEUROSCI. 3686-14.2015.
  24. Klunk W.E., Pettegrew J.W., Abraham D.J. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. Histochem. Cytochem., 1989, vol. 37, no. 8, pp. 1273–1281.
  25. Kondo S., Kagami S., Kido H., Strutz F., Müller G.A., Kuroda Y. Role of mast cell tryptase in renal interstitial fibrosis. Am. Soc. Nephrol., 2001, vol. 8, pp. 1668–1676.
  26. Kuroiwa M., Aoki K., Izumiyama N. Histologikal study of experimental murine AA amyloidosis. Electron. Microsc. [Tokyo], 2003, vol. 52, no. 4, pp. 407–413.
  27. Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. Biol. Chem., 2005, vol. 280, no. 45, pp. 37377–37382.
  28. Reid C., Hebert L., Pozullo G., Gervais F. Splenic macrophage activation and functions in amyloid enhancing factor – induced secondary amyloidosis. Study of phagocytosis, killing, respiratory burst and MHC class II surface expression. Leukocyte Biology, 1993, vol. 53, pp. 651–657.
  29. Rokita H., Shirahama T., Cohen A.S., Meck R.L., Benditt E.P., Sipe J.D. Differetial expression of the amyloid SAA 3 gene in the liver and peritoneal macrophages of mice undergoing dissimilar inflammatory episodes. Immunol., 1987, vol. 139, no. 11, pp. 3849–3853.
  30. Shibolet S., Merker H.J., Sohar E., Gafni J., Heller H. Cellular proliferation during the development of amyloid – Electron microscopic observation on the kidneys of Leishmania-infected hamster. J. Exp. Path., 1967, vol. 48, pp. 244–249.
  31. Shirahama T., Miura K., Ju S.T., Kisilevsky R., Gruys E., Cohen A.S. Amyloid enhancing factor-loaded macrophages in amyloid fibril formation. Lab Invest., 1990, vol. 62, no. 1, pp. 61–68.
  32. So M., Hata Y., Naiki H., Goto Y. Heparin-induced amyloid fibrillation of β2‑microglobulin explained by solubility and a supersaturation-dependent conformational phase diagram. Protein Sci., 2017, vol. 26, no. 5, pp. 1024–1036. DOI: 10.1002/pro.3149.
  33. Tao Du, Ali-Khan Z. Pathogenesis of secondary amyloidosis in an alveolar hydatid cyst-mouse model: histopathology and immuno/enzyme-histohemical analysis of splenic marginal zone cells during amyloidogenesis. Exp. Path., 1990, vol. 71, pp. 313–335.
  34. Tillement J.-P., Lecanu L., Papadopoulos V. Amyloidosis and Neurodegenerative Diseases: Current Treatments and New Pharmacological Options. Pharmacology, 2010, vol. 85, pp. 1–17. DOI: 10.1159/000259044.
  35. Toth T., Toth-Jakatics R., Jimi S., Takebayashi S. Increased density of interstitial mast cells in amyloid A renal amyloidosis. Pathol., 2000, vol. 13, no. 9, pp. 1020–1028.
  36. Welker P., Krämer S., Groneberg D.A., Neumayer H.H., Bachmann S., Amann K., Peters H. Increased mast cell number in human hypertensive nephropathy. J. Physiol. Renal Physiol., 2008, vol. 295, no. 4, pp. 1103–1109. DOI: 10.1152/ajprenal.00374.2007.
  37. Westermark P. Mast cells in the islets of Langerhans ininsular  Virchows Arch. A Pathol. Pathol. Anat., 1971, vol. 354, pp. 17–23.

References

  1. Artishevskii A.A., Leontyuk A.S., Sluka B.A. Gistologiya s tekhnikoi gistologicheskikh issledovanii [Histology with the technique of histological studies]. Minsk, Vysshaya shkola Publ., 1999, 236 p.
  2. Baglai E.O., Dubikov A.I. Tuchnyekletki – klyuchevye uchastniki patogeneza immunovos-palitel’nykh zabolevanii [Mast cells are key participants in the pathogenesis of immunosuppressant diseases]. Nauchno-prakticheskaya revmatologiya [Scientific and Practical Rheumatology], 2015, vol. 53, no. 2, pp. 182–189. DOI: http://dx. doi. org/10.14412/ 1995-4484-2015-182-189.
  3. Busova O.S., Kozlov V.A. Mozhet li tsinkprofilaktirovat’ pochechnyifibroz? [Can zinc prevent kidney fibrosis?]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva [Bulletin of the Chuvash State Pedagogical University named after I. Yakovlev], 2010, no. 1, pp. 16–19.
  4. Gordon D.S. Tinktorial’nye paralleli tuchnykh kletok. Makro-mikrostrukturatkanei v norme, patologii i eksperimente [Tinctorial parallels of mast cells. Macro-microstructure of tissues in norm, pathology and experiment]. Cheboksary, Chuvash State University Publ., 1981, pp. 97–101.
  5. Zapadnyuk I.P., Zapadnyuk V.I., Zakhariya E.A., Zapadnyuk B.V. Laboratornye zhivotnye. Razvedenie, soderzhanie, ispol’zovanie v eksperimente. 3-e izd. pererab. idop [Laboratory animals. Breeding, content, use in the experiment. 3rd]. Kiev, Vysshaya shkola Publ., 1983, 383 p.
  6. Ilyina L.Yu., Efeykina N.B. Tuchnye kletki i amiloidogenez [Mast cells and amyloidogenesis]. Acta Medica Eurasica, 2016, no. 4, pp. 41–50.
  7. Kozlov V.A., Glazyrina O.S. Migratsiya tuchnykh kletok v pochke [Migration of mast cells in the kidney]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva [Bulletin of the Chuvash State Pedagogical University named after I. Yakovlev], 2010, no. 1 (65), pp. 40–46.
  8. Kozlov V.A., Glazyrina O.S. Populyatsiya tuchnykh kletok pochki I pochechnoi kapsuly [Population of mast cells of the kidney and renal capsule]. Moscow, 2009, 104 p.
  9. Kozlov V.A., Sapozhnikov S.P., Mitrasov Yu.N., Avruiskaya A.A., Karyshev P.B., Sheptukhina A.I., Nikolaeva O.V. Amiloid i molekulyarnye motory [Amyloid and molecular motors]. Naukaiinnovatsii – 2015: materialy X Mezhdunar. nauch. shkoly [Proc. of Int. Sci. School «Science and Innovations – 2015»]. Yoshkar-Ola, 2015, pp. 197–204.
  10. Kozlov V.A., Sapozhnikov S.P., Karyshev P.B., Sheptukhina A.I., Nikolaeva O.V. Model’ sistemnogo amiloidoza u molodykh myshei [Systemic amyloidosis model on young mice]. Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of Experimental Biology and Medicine], 2016, vol. 162, no. 10, pp. 523–527.
  11. Lindner D.P., Poberin I.A., Rozkin M.Ya., Efimov V.S. Morfometricheskii analiz populyatsii tuchnykh kletok [Morphometric analysis of the population of mast cells]. Patologii [Arch. Pathology], 1980, no. 6, pp. 60–64.
  12. Sapozhnikov S.P., Karyshev P.B., Sheptukhina A.I., Nikolaeva O.V., Avruiskaya A.A., Mitrasov Yu.N., Kozlov V.A. Novye flyuorestsentnye zondy dlya vyyavleniya amiloida [New fluorescent probes for the detection of amyloid]. Sovremennyetekhnologii v meditsine [Modern technologies in medicine], 2017, vol. 9, no. 2, pp. 91–98. DOI: 10. 17691/stm2017.9.2.11.
  13. Sheptukhina A.I., Nikolaeva O.V., Kozlov V.A., Sapozhnikov S.P. Rol’ etanola v formirovanii eksperimental’nogo amiloidozaamiloidoza [The role of ethanol in the formation of experimental amyloidosis]. Nauchnyi fond «Biolog» [Scientific Foundation «Biologist»], 2015, no. 10(14), pp. 47–50.
  14. Yurina N.A., Radostina A.I. Morfofunktsional’naya geterogennost’ I vzaimodeistvie kletok soedinitel’noi tkani [Morphofunctional heterogeneity and interaction of cells of connective tissue]. Moscow, UDN Publ., 1990, 398 p.
  15. Anekonda T.S. Resveratrol – a boon for treating Alzheimer’s disease? Brain Res. Rev., 2006, vol. 52, no. 2, pp. 316–326.
  16. Bartolini M., Andrisano V. Strategies for the Ingibition of Protein Aggregation in Human Diseases. Bio. Chem., 2010, vol. 11, pp. 1–19.
  17. Bohle A., Wehrmann M., Eissele R., von Gise H., Mackensen-Haen S., Muller C. The long-term prognosis of AA and AL renal amyloidosis and the pathogenesis of chronic renal failure in renal amyloidosis. Res. Pract., 1993, vol. 9, no 3, pp. 316–331.
  18. Schiff L., Schiff E.R., eds.; Cohen A. S., Skinner M. Diseases of the Liver. 6th Philadelphia, 1988, pp. 1093–1108.
  19. Danilewicz M., Wagrowska-Danilewicz M. Quantitative analysis of interstitial mast cells in AA and AL renal amyloidosis. Res. Pract., 2002, vol. 198, no. 6, pp. 413–419.
  20. Gafni J., Merker H.J., Shibolet S., Sohar E., Heller H. On the origin of amyloid. Intern. Med., 1966, vol. 65, pp. 1031–1044.
  21. Gritsman A. Effect of histamine and diprazin on the course of experimental amyloidosis in mice. Patol., 1975, vol. 37, no. 7, pp. 50–56.
  22. Gueft B., Chidoni J.J. The site of formation and ultrastructure of amyloid. J. Path., 1963, vol. 43, pp. 837–854.
  23. Harcha P.A., Vargas A., Yi C., Koulakoff A.A., Giaume C., Saez J.C. Hemichannels Are Required for Amyloid β – Peptide-Induced Degranulation and Are Activated in Brain Mast Cells of APPswe/PS1dE9 Mice. Neurosci., 2015, vol. 35, no. 25, pp. 9526–9538. DOI: 10.1523/JNEUROSCI. 3686-14.2015.
  24. Klunk W.E., Pettegrew J.W., Abraham D.J. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. Histochem. Cytochem., 1989, vol. 37, no. 8, pp. 1273–1281.
  25. Kondo S., Kagami S., Kido H., Strutz F., Müller G.A., Kuroda Y. Role of mast cell tryptase in renal interstitial fibrosis. Am. Soc. Nephrol., 2001, vol. 8, pp. 1668–1676.
  26. Kuroiwa M., Aoki K., Izumiyama N. Histologikal study of experimental murine AA amyloidosis. Electron. Microsc. [Tokyo], 2003, vol. 52, no. 4, pp. 407–413.
  27. Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. Biol. Chem., 2005, vol. 280, no. 45, pp. 37377–37382.
  28. Reid C., Hebert L., Pozullo G., Gervais F. Splenic macrophage activation and functions in amyloid enhancing factor – induced secondary amyloidosis. Study of phagocytosis, killing, respiratory burst and MHC class II surface expression. Leukocyte Biology, 1993, vol. 53, pp. 651–657.
  29. Rokita H., Shirahama T., Cohen A.S., Meck R.L., Benditt E.P., Sipe J.D. Differetial expression of the amyloid SAA 3 gene in the liver and peritoneal macrophages of mice undergoing dissimilar inflammatory episodes. Immunol., 1987, vol. 139, no. 11, pp. 3849–3853.
  30. Shibolet S., Merker H.J., Sohar E., Gafni J., Heller H. Cellular proliferation during the development of amyloid – Electron microscopic observation on the kidneys of Leishmania-infected hamster. J. Exp. Path., 1967, vol. 48, pp. 244–249.
  31. Shirahama T., Miura K., Ju S.T., Kisilevsky R., Gruys E., Cohen A.S. Amyloid enhancing factor-loaded macrophages in amyloid fibril formation. Lab Invest., 1990, vol. 62, no. 1, pp. 61–68.
  32. So M., Hata Y., Naiki H., Goto Y. Heparin-induced amyloid fibrillation of β2‑microglobulin explained by solubility and a supersaturation-dependent conformational phase diagram. Protein Sci., 2017, vol. 26, no. 5, pp. 1024–1036. DOI: 10.1002/pro.3149.
  33. Tao Du, Ali-Khan Z. Pathogenesis of secondary amyloidosis in an alveolar hydatid cyst-mouse model: histopathology and immuno/enzyme-histohemical analysis of splenic marginal zone cells during amyloidogenesis. Exp. Path., 1990, vol. 71, pp. 313–335.
  34. Tillement J.-P., Lecanu L., Papadopoulos V. Amyloidosis and Neurodegenerative Diseases: Current Treatments and New Pharmacological Options. Pharmacology, 2010, vol. 85, pp. 1–17. DOI: 10.1159/000259044.
  35. Toth T., Toth-Jakatics R., Jimi S., Takebayashi S. Increased density of interstitial mast cells in amyloid A renal amyloidosis. Pathol., 2000, vol. 13, no. 9, pp. 1020–1028.
  36. Welker P., Krämer S., Groneberg D.A., Neumayer H.H., Bachmann S., Amann K., Peters H. Increased mast cell number in human hypertensive nephropathy. J. Physiol. Renal Physiol., 2008, vol. 295, no. 4, pp. 1103–1109. DOI: 10.1152/ajprenal.00374.2007.
  37. Westermark P. Mast cells in the islets of Langerhans in insular amyloidosis. Virchows Arch. A Pathol. Pathol. Anat., 1971, vol. 354, pp. 17–23.

Сведения об авторах

Ильина Лилия Юрьевна
старший преподаватель кафедры медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (lileaceae@rambler.ru; ORCID: https://orcid.org/0000-0002-1257-2220)
Ефейкина Надежда Борисовна
кандидат биологических наук, доцент кафедры медицинской биологии с курсом микробиологии и вирусологии, Чувашский государственный университет, Россия, Чебоксары (nadezhdaefeykina@yandex.ru; )

Ссылка на статью

Ильина Л.Ю., Ефейкина Н.Б. Состояние популяции тучных клеток почек мышей при экспериментальном амилоидозе [Электронный ресурс] // Acta medica Eurasica. – 2018. – №2. – С. 50-60. – URL: https://acta-medica-eurasica.ru/single/2018/2/8/.